ORIGIN OF SPECIES Chapters XIII-XV by Charles Darwin CHAPTER XIII GEOGRAPHICAL DISTRIBUTION —continued Distribution of fresh-water productions—On the inhabitants of oceanic islands—Absence of Batrachians and of terrestrial Mammals—On the relation of the inhabitants of islands to those of the nearest mainland—On colonisation from the nearest source with subsequent modification—Summary of the last and present chapters. Fresh-water Productions. As lakes and river-systems are separated from each other by barriers of land, it might have been thought that fresh-water productions would not have ranged widely within the same country, and as the sea is apparently a still more formidable barrier, that they would never have extended to distant countries. But the case is exactly the reverse. Not only have many fresh-water species, belonging to different classes, an enormous range, but allied species prevail in a remarkable manner throughout the world. When first collecting in the fresh waters of Brazil, I well remember feeling much surprise at the similarity of the fresh-water insects, shells, &c., and at the dissimilarity of the surrounding terrestrial beings, compared with those of Britain. But the wide ranging power of fresh-water productions can, I think, in most cases be explained by their having become fitted, in a manner highly useful to them, for short and frequent migrations from pond to pond, or from stream to stream, within their own countries; and liability to wide dispersal would follow from this capacity as an almost necessary consequence. We can here consider only a few cases; of these, some of the most difficult to explain are presented by fish. It was formerly believed that the same fresh-water species never existed on two continents distant from each other. But Dr. Günther has lately shown that the Galaxias attenuatus inhabits Tasmania, New Zealand, the Falkland Islands and the mainland of South America. This is a wonderful case, and probably indicates dispersal from an Antarctic centre during a former warm period. This case, however, is rendered in some degree less surprising by the species of this genus having the power of crossing by some unknown means considerable spaces of open ocean: thus there is one species common to New Zealand and to the Auckland Islands, though separated by a distance of about 230 miles. On the same continent fresh-water fish often range widely, and as if capriciously; for in two adjoining river systems some of the species may be the same and some wholly different. It is probable that they are occasionally transported by what may be called accidental means. Thus fishes still alive are not very rarely dropped at distant points by whirlwinds; and it is known that the ova retain their vitality for a considerable time after removal from the water. Their dispersal may, however, be mainly attributed to changes in the level of the land within the recent period, causing rivers to flow into each other. Instances, also, could be given of this having occurred during floods, without any change of level. The wide differences of the fish on the opposite sides of most mountain-ranges, which are continuous and consequently must, from an early period, have completely prevented the inosculation of the river systems on the two sides, leads to the same conclusion. Some fresh-water fish belong to very ancient forms, and in such cases there will have been ample time for great geographical changes, and consequently time and means for much migration. Moreover, Dr. Günther has recently been led by several considerations to infer that with fishes the same forms have a long endurance. Salt-water fish can with care be slowly accustomed to live in fresh water; and, according to Valenciennes, there is hardly a single group of which all the members are confined to fresh water, so that a marine species belonging to a fresh-water group might travel far along the shores of the sea, and could, it is probable, become adapted without much difficulty to the fresh waters of a distant land. Some species of fresh-water shells have very wide ranges, and allied species which, on our theory, are descended from a common parent, and must have proceeded from a single source, prevail throughout the world. Their distribution at first perplexed me much, as their ova are not likely to be transported by birds; and the ova, as well as the adults, are immediately killed by sea-water. I could not even understand how some naturalised species have spread rapidly throughout the same country. But two facts, which I have observed—and many others no doubt will be discovered—throw some light on this subject. When ducks suddenly emerge from a pond covered with duck-weed, I have twice seen these little plants adhering to their backs; and it has happened to me, in removing a little duck-weed from one aquarium to another, that I have unintentionally stocked the one with fresh-water shells from the other. But another agency is perhaps more effectual: I suspended the feet of a duck in an aquarium, where many ova of fresh-water shells were hatching; and I found that numbers of the extremely minute and just-hatched shells crawled on the feet, and clung to them so firmly that when taken out of the water they could not be jarred off, though at a somewhat more advanced age they would voluntarily drop off. These just-hatched molluscs, though aquatic in their nature, survived on the duck’s feet, in damp air, from twelve to twenty hours; and in this length of time a duck or heron might fly at least six or seven hundred miles, and if blown across the sea to an oceanic island, or to any other distant point, would be sure to alight on a pool or rivulet. Sir Charles Lyell informs me that a Dyticus has been caught with an Ancylus (a fresh-water shell like a limpet) firmly adhering to it; and a water-beetle of the same family, a Colymbetes, once flew on board the “Beagle,” when forty-five miles distant from the nearest land: how much farther it might have been blown by a favouring gale no one can tell. With respect to plants, it has long been known what enormous ranges many fresh-water, and even marsh-species, have, both over continents and to the most remote oceanic islands. This is strikingly illustrated, according to Alph. de Candolle, in those large groups of terrestrial plants, which have very few aquatic members; for the latter seem immediately to acquire, as if in consequence, a wide range. I think favourable means of dispersal explain this fact. I have before mentioned that earth occasionally adheres in some quantity to the feet and beaks of birds. Wading birds, which frequent the muddy edges of ponds, if suddenly flushed, would be the most likely to have muddy feet. Birds of this order wander more than those of any other; and are occasionally found on the most remote and barren islands of the open ocean; they would not be likely to alight on the surface of the sea, so that any dirt on their feet would not be washed off; and when gaining the land, they would be sure to fly to their natural fresh-water haunts. I do not believe that botanists are aware how charged the mud of ponds is with seeds: I have tried several little experiments, but will here give only the most striking case: I took in February three tablespoonfuls of mud from three different points, beneath water, on the edge of a little pond; this mud when dry weighed only 6 and 3/4 ounces; I kept it covered up in my study for six months, pulling up and counting each plant as it grew; the plants were of many kinds, and were altogether 537 in number; and yet the viscid mud was all contained in a breakfast cup! Considering these facts, I think it would be an inexplicable circumstance if water-birds did not transport the seeds of fresh-water plants to unstocked ponds and streams, situated at very distant points. The same agency may have come into play with the eggs of some of the smaller fresh-water animals. Other and unknown agencies probably have also played a part. I have stated that fresh-water fish eat some kinds of seeds, though they reject many other kinds after having swallowed them; even small fish swallow seeds of moderate size, as of the yellow water-lily and Potamogeton. Herons and other birds, century after century, have gone on daily devouring fish; they then take flight and go to other waters, or are blown across the sea; and we have seen that seeds retain their power of germination, when rejected many hours afterwards in pellets or in the excrement. When I saw the great size of the seeds of that fine water-lily, the Nelumbium, and remembered Alph. de Candolle’s remarks on the distribution of this plant, I thought that the means of its dispersal must remain inexplicable; but Audubon states that he found the seeds of the great southern water-lily (probably according to Dr. Hooker, the Nelumbium luteum) in a heron’s stomach. Now this bird must often have flown with its stomach thus well stocked to distant ponds, and, then getting a hearty meal of fish, analogy makes me believe that it would have rejected the seeds in the pellet in a fit state for germination. In considering these several means of distribution, it should be remembered that when a pond or stream is first formed, for instance on a rising islet, it will be unoccupied; and a single seed or egg will have a good chance of succeeding. Although there will always be a struggle for life between the inhabitants of the same pond, however few in kind, yet as the number even in a well-stocked pond is small in comparison with the number of species inhabiting an equal area of land, the competition between them will probably be less severe than between terrestrial species; consequently an intruder from the waters of a foreign country would have a better chance of seizing on a new place, than in the case of terrestrial colonists. We should also remember that many fresh-water productions are low in the scale of nature, and we have reason to believe that such beings become modified more slowly than the high; and this will give time for the migration of aquatic species. We should not forget the probability of many fresh-water forms having formerly ranged continuously over immense areas, and then having become extinct at intermediate points. But the wide distribution of fresh-water plants, and of the lower animals, whether retaining the same identical form, or in some degree modified, apparently depends in main part on the wide dispersal of their seeds and eggs by animals, more especially by fresh-water birds, which have great powers of flight, and naturally travel from one piece of water to another. On the Inhabitants of Oceanic Islands. We now come to the last of the three classes of facts, which I have selected as presenting the greatest amount of difficulty with respect to distribution, on the view that not only all the individuals of the same species have migrated from some one area, but that allied species, although now inhabiting the most distant points, have proceeded from a single area, the birthplace of their early progenitors. I have already given my reasons for disbelieving in continental extensions within the period of existing species on so enormous a scale that all the many islands of the several oceans were thus stocked with their present terrestrial inhabitants. This view removes many difficulties, but it does not accord with all the facts in regard to the productions of islands. In the following remarks I shall not confine myself to the mere question of dispersal, but shall consider some other cases bearing on the truth of the two theories of independent creation and of descent with modification. The species of all kinds which inhabit oceanic islands are few in number compared with those on equal continental areas: Alph. de Candolle admits this for plants, and Wollaston for insects. New Zealand, for instance, with its lofty mountains and diversified stations, extending over 780 miles of latitude, together with the outlying islands of Auckland, Campbell and Chatham, contain altogether only 960 kinds of flowering plants; if we compare this moderate number with the species which swarm over equal areas in Southwestern Australia or at the Cape of Good Hope, we must admit that some cause, independently of different physical conditions, has given rise to so great a difference in number. Even the uniform county of Cambridge has 847 plants, and the little island of Anglesea 764, but a few ferns and a few introduced plants are included in these numbers, and the comparison in some other respects is not quite fair. We have evidence that the barren island of Ascension aboriginally possessed less than half-a-dozen flowering plants; yet many species have now become naturalised on it, as they have in New Zealand and on every other oceanic island which can be named. In St. Helena there is reason to believe that the naturalised plants and animals have nearly or quite exterminated many native productions. He who admits the doctrine of the creation of each separate species, will have to admit that a sufficient number of the best adapted plants and animals were not created for oceanic islands; for man has unintentionally stocked them far more fully and perfectly than did nature. Although in oceanic islands the species are few in number, the proportion of endemic kinds (i.e. those found nowhere else in the world) is often extremely large. If we compare, for instance, the number of endemic land-shells in Madeira, or of endemic birds in the Galapagos Archipelago, with the number found on any continent, and then compare the area of the island with that of the continent, we shall see that this is true. This fact might have been theoretically expected, for, as already explained, species occasionally arriving, after long intervals of time in the new and isolated district, and having to compete with new associates, would be eminently liable to modification, and would often produce groups of modified descendants. But it by no means follows that, because in an island nearly all the species of one class are peculiar, those of another class, or of another section of the same class, are peculiar; and this difference seems to depend partly on the species which are not modified having immigrated in a body, so that their mutual relations have not been much disturbed; and partly on the frequent arrival of unmodified immigrants from the mother-country, with which the insular forms have intercrossed. It should be borne in mind that the offspring of such crosses would certainly gain in vigour; so that even an occasional cross would produce more effect than might have been anticipated. I will give a few illustrations of the foregoing remarks: in the Galapagos Islands there are twenty-six land birds; of these twenty-one (or perhaps twenty-three) are peculiar; whereas of the eleven marine birds only two are peculiar; and it is obvious that marine birds could arrive at these islands much more easily and frequently than land-birds. Bermuda, on the other hand, which lies at about the same distance from North America as the Galapagos Islands do from South America, and which has a very peculiar soil, does not possess a single endemic land bird; and we know from Mr. J.M. Jones’s admirable account of Bermuda, that very many North American birds occasionally or even frequently visit this island. Almost every year, as I am informed by Mr. E.V. Harcourt, many European and African birds are blown to Madeira; this island is inhabited by ninety-nine kinds, of which one alone is peculiar, though very closely related to a European form; and three or four other species are confined to this island and to the Canaries. So that the islands of Bermuda and Madeira have been stocked from the neighbouring continents with birds, which for long ages have there struggled together, and have become mutually co-adapted. Hence, when settled in their new homes, each kind will have been kept by the others to its proper place and habits, and will consequently have been but little liable to modification. Any tendency to modification will also have been checked by intercrossing with the unmodified immigrants, often arriving from the mother-country. Madeira again is inhabited by a wonderful number of peculiar land-shells, whereas not one species of sea-shell is peculiar to its shores: now, though we do not know how sea-shells are dispersed, yet we can see that their eggs or larvæ, perhaps attached to seaweed or floating timber, or to the feet of wading birds, might be transported across three or four hundred miles of open sea far more easily than land-shells. The different orders of insects inhabiting Madeira present nearly parallel cases. Oceanic islands are sometimes deficient in animals of certain whole classes, and their places are occupied by other classes; thus in the Galapagos Islands reptiles, and in New Zealand gigantic wingless birds, take, or recently took, the place of mammals. Although New Zealand is here spoken of as an oceanic island, it is in some degree doubtful whether it should be so ranked; it is of large size, and is not separated from Australia by a profoundly deep sea; from its geological character and the direction of its mountain ranges, the Rev. W.B. Clarke has lately maintained that this island, as well as New Caledonia, should be considered as appurtenances of Australia. Turning to plants, Dr. Hooker has shown that in the Galapagos Islands the proportional numbers of the different orders are very different from what they are elsewhere. All such differences in number, and the absence of certain whole groups of animals and plants, are generally accounted for by supposed differences in the physical conditions of the islands; but this explanation is not a little doubtful. Facility of immigration seems to have been fully as important as the nature of the conditions. Many remarkable little facts could be given with respect to the inhabitants of oceanic islands. For instance, in certain islands not tenanted by a single mammal, some of the endemic plants have beautifully hooked seeds; yet few relations are more manifest than that hooks serve for the transportal of seeds in the wool or fur of quadrupeds. But a hooked seed might be carried to an island by other means; and the plant then becoming modified would form an endemic species, still retaining its hooks, which would form a useless appendage, like the shrivelled wings under the soldered wing-covers of many insular beetles. Again, islands often possess trees or bushes belonging to orders which elsewhere include only herbaceous species; now trees, as Alph. de Candolle has shown, generally have, whatever the cause may be, confined ranges. Hence trees would be little likely to reach distant oceanic islands; and an herbaceous plant, which had no chance of successfully competing with the many fully developed trees growing on a continent, might, when established on an island, gain an advantage over other herbaceous plants by growing taller and taller and overtopping them. In this case, natural selection would tend to add to the stature of the plant, to whatever order it belonged, and thus first convert it into a bush and then into a tree. Absence of Batrachians and Terrestrial mammals on Oceanic Islands. With respect to the absence of whole orders of animals on oceanic islands, Bory St. Vincent long ago remarked that Batrachians (frogs, toads, newts) are never found on any of the many islands with which the great oceans are studded. I have taken pains to verify this assertion, and have found it true, with the exception of New Zealand, New Caledonia, the Andaman Islands, and perhaps the Solomon Islands and the Seychelles. But I have already remarked that it is doubtful whether New Zealand and New Caledonia ought to be classed as oceanic islands; and this is still more doubtful with respect to the Andaman and Solomon groups and the Seychelles. This general absence of frogs, toads and newts on so many true oceanic islands cannot be accounted for by their physical conditions; indeed it seems that islands are peculiarly fitted for these animals; for frogs have been introduced into Madeira, the Azores, and Mauritius, and have multiplied so as to become a nuisance. But as these animals and their spawn are immediately killed (with the exception, as far as known, of one Indian species) by sea-water, there would be great difficulty in their transportal across the sea, and therefore we can see why they do not exist on strictly oceanic islands. But why, on the theory of creation, they should not have been created there, it would be very difficult to explain. Mammals offer another and similar case. I have carefully searched the oldest voyages, and have not found a single instance, free from doubt, of a terrestrial mammal (excluding domesticated animals kept by the natives) inhabiting an island situated above 300 miles from a continent or great continental island; and many islands situated at a much less distance are equally barren. The Falkland Islands, which are inhabited by a wolf-like fox, come nearest to an exception; but this group cannot be considered as oceanic, as it lies on a bank in connection with the mainland at a distance of about 280 miles; moreover, icebergs formerly brought boulders to its western shores, and they may have formerly transported foxes, as now frequently happens in the arctic regions. Yet it cannot be said that small islands will not support at least small mammals, for they occur in many parts of the world on very small islands, when lying close to a continent; and hardly an island can be named on which our smaller quadrupeds have not become naturalised and greatly multiplied. It cannot be said, on the ordinary view of creation, that there has not been time for the creation of mammals; many volcanic islands are sufficiently ancient, as shown by the stupendous degradation which they have suffered, and by their tertiary strata: there has also been time for the production of endemic species belonging to other classes; and on continents it is known that new species of mammals appear and disappear at a quicker rate than other and lower animals. Although terrestrial mammals do not occur on oceanic islands, aërial mammals do occur on almost every island. New Zealand possesses two bats found nowhere else in the world: Norfolk Island, the Viti Archipelago, the Bonin Islands, the Caroline and Marianne Archipelagoes, and Mauritius, all possess their peculiar bats. Why, it may be asked, has the supposed creative force produced bats and no other mammals on remote islands? On my view this question can easily be answered; for no terrestrial mammal can be transported across a wide space of sea, but bats can fly across. Bats have been seen wandering by day far over the Atlantic Ocean; and two North American species, either regularly or occasionally, visit Bermuda, at the distance of 600 miles from the mainland. I hear from Mr. Tomes, who has specially studied this family, that many species have enormous ranges, and are found on continents and on far distant islands. Hence, we have only to suppose that such wandering species have been modified in their new homes in relation to their new position, and we can understand the presence of endemic bats on oceanic islands, with the absence of all other terrestrial mammals. Another interesting relation exists, namely, between the depth of the sea separating islands from each other, or from the nearest continent, and the degree of affinity of their mammalian inhabitants. Mr. Windsor Earl has made some striking observations on this head, since greatly extended by Mr. Wallace’s admirable researches, in regard to the great Malay Archipelago, which is traversed near Celebes by a space of deep ocean, and this separates two widely distinct mammalian faunas. On either side, the islands stand on a moderately shallow submarine bank, and these islands are inhabited by the same or by closely allied quadrupeds. I have not as yet had time to follow up this subject in all quarters of the world; but as far as I have gone, the relation holds good. For instance, Britain is separated by a shallow channel from Europe, and the mammals are the same on both sides; and so it is with all the islands near the shores of Australia. The West Indian Islands, on the other hand, stand on a deeply submerged bank, nearly one thousand fathoms in depth, and here we find American forms, but the species and even the genera are quite distinct. As the amount of modification which animals of all kinds undergo partly depends on the lapse of time, and as the islands which are separated from each other, or from the mainland, by shallow channels, are more likely to have been continuously united within a recent period than the islands separated by deeper channels, we can understand how it is that a relation exists between the depth of the sea separating two mammalian faunas, and the degree of their affinity, a relation which is quite inexplicable on the theory of independent acts of creation. The foregoing statements in regard to the inhabitants of oceanic islands, namely, the fewness of the species, with a large proportion consisting of endemic forms—the members of certain groups, but not those of other groups in the same class, having been modified—the absence of certain whole orders, as of batrachians and of terrestrial mammals, notwithstanding the presence of aërial bats, the singular proportions of certain orders of plants, herbaceous forms having been developed into trees, &c., seem to me to accord better with the belief in the efficiency of occasional means of transport, carried on during a long course of time, than with the belief in the former connection of all oceanic islands with the nearest continent; for on this latter view it is probable that the various classes would have immigrated more uniformly, and from the species having entered in a body, their mutual relations would not have been much disturbed, and consequently, they would either have not been modified, or all the species in a more equable manner. I do not deny that there are many and serious difficulties in understanding how many of the inhabitants of the more remote islands, whether still retaining the same specific form or subsequently modified, have reached their present homes. But the probability of other islands having once existed as halting-places, of which not a wreck now remains, must not be overlooked. I will specify one difficult case. Almost all oceanic islands, even the most isolated and smallest, are inhabited by land-shells, generally by endemic species, but sometimes by species found elsewhere striking instances of which have been given by Dr. A.A. Gould in relation to the Pacific. Now it is notorious that land-shells are easily killed by sea-water; their eggs, at least such as I have tried, sink in it and are killed. Yet there must be some unknown, but occasionally efficient means for their transportal. Would the just-hatched young sometimes adhere to the feet of birds roosting on the ground and thus get transported? It occurred to me that land-shells, when hybernating and having a membranous diaphragm over the mouth of the shell, might be floated in chinks of drifted timber across moderately wide arms of the sea. And I find that several species in this state withstand uninjured an immersion in sea-water during seven days. One shell, the Helix pomatia, after having been thus treated, and again hybernating, was put into sea-water for twenty days and perfectly recovered. During this length of time the shell might have been carried by a marine country of average swiftness to a distance of 660 geographical miles. As this Helix has a thick calcareous operculum I removed it, and when it had formed a new membranous one, I again immersed it for fourteen days in sea-water, and again it recovered and crawled away. Baron Aucapitaine has since tried similar experiments. He placed 100 land-shells, belonging to ten species, in a box pierced with holes, and immersed it for a fortnight in the sea. Out of the hundred shells twenty-seven recovered. The presence of an operculum seems to have been of importance, as out of twelve specimens of Cyclostoma elegans, which is thus furnished, eleven revived. It is remarkable, seeing how well the Helix pomatia resisted with me the salt-water, that not one of fifty-four specimens belonging to four other species of Helix tried by Aucapitaine recovered. It is, however, not at all probable that land-shells have often been thus transported; the feet of birds offer a more probable method. On the Relations of the Inhabitants of Islands to those of the nearest Mainland. The most striking and important fact for us is the affinity of the species which inhabit islands to those of the nearest mainland, without being actually the same. Numerous instances could be given. The Galapagos Archipelago, situated under the equator, lies at a distance of between 500 and 600 miles from the shores of South America. Here almost every product of the land and of the water bears the unmistakable stamp of the American continent. There are twenty-six land-birds. Of these twenty-one, or perhaps twenty-three, are ranked as distinct species, and would commonly be assumed to have been here created; yet the close affinity of most of these birds to American species is manifest in every character in their habits, gestures, and tones of voice. So it is with the other animals, and with a large proportion of the plants, as shown by Dr. Hooker in his admirable Flora of this archipelago. The naturalist, looking at the inhabitants of these volcanic islands in the Pacific, distant several hundred miles from the continent, feels that he is standing on American land. Why should this be so? Why should the species which are supposed to have been created in the Galapagos Archipelago, and nowhere else, bear so plainly the stamp of affinity to those created in America? There is nothing in the conditions of life, in the geological nature of the islands, in their height or climate, or in the proportions in which the several classes are associated together, which closely resembles the conditions of the South American coast. In fact, there is a considerable dissimilarity in all these respects. On the other hand, there is a considerable degree of resemblance in the volcanic nature of the soil, in the climate, height, and size of the islands, between the Galapagos and Cape Verde Archipelagos: but what an entire and absolute difference in their inhabitants! The inhabitants of the Cape Verde Islands are related to those of Africa, like those of the Galapagos to America. Facts, such as these, admit of no sort of explanation on the ordinary view of independent creation; whereas, on the view here maintained, it is obvious that the Galapagos Islands would be likely to receive colonists from America, whether by occasional means of transport or (though I do not believe in this doctrine) by formerly continuous land, and the Cape Verde Islands from Africa; such colonists would be liable to modification—the principle of inheritance still betraying their original birthplace. Many analogous facts could be given: indeed it is an almost universal rule that the endemic productions of islands are related to those of the nearest continent, or of the nearest large island. The exceptions are few, and most of them can be explained. Thus, although Kerguelen Land stands nearer to Africa than to America, the plants are related, and that very closely, as we know from Dr. Hooker’s account, to those of America: but on the view that this island has been mainly stocked by seeds brought with earth and stones on icebergs, drifted by the prevailing currents, this anomaly disappears. New Zealand in its endemic plants is much more closely related to Australia, the nearest mainland, than to any other region: and this is what might have been expected; but it is also plainly related to South America, which, although the next nearest continent, is so enormously remote, that the fact becomes an anomaly. But this difficulty partially disappears on the view that New Zealand, South America, and the other southern lands, have been stocked in part from a nearly intermediate though distant point, namely, from the antarctic islands, when they were clothed with vegetation, during a warmer tertiary period, before the commencement of the last Glacial period. The affinity, which, though feeble, I am assured by Dr. Hooker is real, between the flora of the south-western corner of Australia and of the Cape of Good Hope, is a far more remarkable case; but this affinity is confined to the plants, and will, no doubt, some day be explained. The same law which has determined the relationship between the inhabitants of islands and the nearest mainland, is sometimes displayed on a small scale, but in a most interesting manner, within the limits of the same archipelago. Thus each separate island of the Galapagos Archipelago is tenanted, and the fact is a marvellous one, by many distinct species; but these species are related to each other in a very much closer manner than to the inhabitants of the American continent, or of any other quarter of the world. This is what might have been expected, for islands situated so near to each other would almost necessarily receive immigrants from the same original source, and from each other. But how is it that many of the immigrants have been differently modified, though only in a small degree, in islands situated within sight of each other, having the same geological nature, the same height, climate, etc? This long appeared to me a great difficulty: but it arises in chief part from the deeply-seated error of considering the physical conditions of a country as the most important; whereas it cannot be disputed that the nature of the other species with which each has to compete, is at least as important, and generally a far more important element of success. Now if we look to the species which inhabit the Galapagos Archipelago, and are likewise found in other parts of the world, we find that they differ considerably in the several islands. This difference might indeed have been expected if the islands have been stocked by occasional means of transport—a seed, for instance, of one plant having been brought to one island, and that of another plant to another island, though all proceeding from the same general source. Hence, when in former times an immigrant first settled on one of the islands, or when it subsequently spread from one to another, it would undoubtedly be exposed to different conditions in the different islands, for it would have to compete with a different set of organisms; a plant, for instance, would find the ground best-fitted for it occupied by somewhat different species in the different islands, and would be exposed to the attacks of somewhat different enemies. If, then, it varied, natural selection would probably favour different varieties in the different islands. Some species, however, might spread and yet retain the same character throughout the group, just as we see some species spreading widely throughout a continent and remaining the same. The really surprising fact in this case of the Galapagos Archipelago, and in a lesser degree in some analogous cases, is that each new species after being formed in any one island, did not spread quickly to the other islands. But the islands, though in sight of each other, are separated by deep arms of the sea, in most cases wider than the British Channel, and there is no reason to suppose that they have at any former period been continuously united. The currents of the sea are rapid and deep between the islands, and gales of wind are extraordinarily rare; so that the islands are far more effectually separated from each other than they appear on a map. Nevertheless, some of the species, both of those found in other parts of the world and of those confined to the archipelago, are common to the several islands; and we may infer from the present manner of distribution that they have spread from one island to the others. But we often take, I think, an erroneous view of the probability of closely allied species invading each other’s territory, when put into free intercommunication. Undoubtedly, if one species has any advantage over another, it will in a very brief time wholly or in part supplant it; but if both are equally well fitted for their own places, both will probably hold their separate places for almost any length of time. Being familiar with the fact that many species, naturalised through man’s agency, have spread with astonishing rapidity over wide areas, we are apt to infer that most species would thus spread; but we should remember that the species which become naturalised in new countries are not generally closely allied to the aboriginal inhabitants, but are very distinct forms, belonging in a large proportion of cases, as shown by Alph. de Candolle, to distinct genera. In the Galapagos Archipelago, many even of the birds, though so well adapted for flying from island to island, differ on the different islands; thus there are three closely allied species of mocking-thrush, each confined to its own island. Now let us suppose the mocking-thrush of Chatham Island to be blown to Charles Island, which has its own mocking-thrush; why should it succeed in establishing itself there? We may safely infer that Charles Island is well stocked with its own species, for annually more eggs are laid and young birds hatched than can possibly be reared; and we may infer that the mocking-thrush peculiar to Charles Island is at least as well fitted for its home as is the species peculiar to Chatham Island. Sir C. Lyell and Mr. Wollaston have communicated to me a remarkable fact bearing on this subject; namely, that Madeira and the adjoining islet of Porto Santo possess many distinct but representative species of land-shells, some of which live in crevices of stone; and although large quantities of stone are annually transported from Porto Santo to Madeira, yet this latter island has not become colonised by the Porto Santo species: nevertheless, both islands have been colonised by some European land-shells, which no doubt had some advantage over the indigenous species. From these considerations I think we need not greatly marvel at the endemic species which inhabit the several islands of the Galapagos Archipelago not having all spread from island to island. On the same continent, also, pre-occupation has probably played an important part in checking the commingling of the species which inhabit different districts with nearly the same physical conditions. Thus, the south-east and south-west corners of Australia have nearly the same physical conditions, and are united by continuous land, yet they are inhabited by a vast number of distinct mammals, birds, and plants; so it is, according to Mr. Bates, with the butterflies and other animals inhabiting the great, open, and continuous valley of the Amazons. The same principle which governs the general character of the inhabitants of oceanic islands, namely, the relation to the source whence colonists could have been most easily derived, together with their subsequent modification, is of the widest application throughout nature. We see this on every mountain-summit, in every lake and marsh. For Alpine species, excepting in as far as the same species have become widely spread during the Glacial epoch, are related to those of the surrounding lowlands; thus we have in South America, Alpine humming-birds, Alpine rodents, Alpine plants, &c., all strictly belonging to American forms; and it is obvious that a mountain, as it became slowly upheaved, would be colonised from the surrounding lowlands. So it is with the inhabitants of lakes and marshes, excepting in so far as great facility of transport has allowed the same forms to prevail throughout large portions of the world. We see the same principle in the character of most of the blind animals inhabiting the caves of America and of Europe. Other analogous facts could be given. It will, I believe, be found universally true, that wherever in two regions, let them be ever so distant, many closely allied or representative species occur, there will likewise be found some identical species; and wherever many closely-allied species occur, there will be found many forms which some naturalists rank as distinct species, and others as mere varieties; these doubtful forms showing us the steps in the process of modification. The relation between the power and extent of migration in certain species, either at the present or at some former period, and the existence at remote points of the world of closely allied species, is shown in another and more general way. Mr. Gould remarked to me long ago, that in those genera of birds which range over the world, many of the species have very wide ranges. I can hardly doubt that this rule is generally true, though difficult of proof. Among mammals, we see it strikingly displayed in Bats, and in a lesser degree in the Felidæ and Canidæ. We see the same rule in the distribution of butterflies and beetles. So it is with most of the inhabitants of fresh water, for many of the genera in the most distinct classes range over the world, and many of the species have enormous ranges. It is not meant that all, but that some of the species have very wide ranges in the genera which range very widely. Nor is it meant that the species in such genera have, on an average, a very wide range; for this will largely depend on how far the process of modification has gone; for instance, two varieties of the same species inhabit America and Europe, and thus the species has an immense range; but, if variation were to be carried a little further, the two varieties would be ranked as distinct species, and their range would be greatly reduced. Still less is it meant, that species which have the capacity of crossing barriers and ranging widely, as in the case of certain powerfully-winged birds, will necessarily range widely; for we should never forget that to range widely implies not only the power of crossing barriers, but the more important power of being victorious in distant lands in the struggle for life with foreign associates. But according to the view that all the species of a genus, though distributed to the most remote points of the world, are descended from a single progenitor, we ought to find, and I believe as a general rule we do find, that some at least of the species range very widely. We should bear in mind that many genera in all classes are of ancient origin, and the species in this case will have had ample time for dispersal and subsequent modification. There is also reason to believe, from geological evidence, that within each great class the lower organisms change at a slower rate than the higher; consequently they will have had a better chance of ranging widely and of still retaining the same specific character. This fact, together with that of the seeds and eggs of most lowly organised forms being very minute and better fitted for distant transportal, probably accounts for a law which has long been observed, and which has lately been discussed by Alph. de Candolle in regard to plants, namely, that the lower any group of organisms stands the more widely it ranges. The relations just discussed—namely, lower organisms ranging more widely than the higher—some of the species of widely-ranging genera themselves ranging widely—such facts, as alpine, lacustrine, and marsh productions being generally related to those which live on the surrounding low lands and dry lands—the striking relationship between the inhabitants of islands and those of the nearest mainland—the still closer relationship of the distinct inhabitants of the islands of the same archipelago—are inexplicable on the ordinary view of the independent creation of each species, but are explicable if we admit colonisation from the nearest or readiest source, together with the subsequent adaptation of the colonists to their new homes. Summary of the last and present Chapters. In these chapters I have endeavoured to show that if we make due allowance for our ignorance of the full effects of changes of climate and of the level of the land, which have certainly occurred within the recent period, and of other changes which have probably occurred—if we remember how ignorant we are with respect to the many curious means of occasional transport—if we bear in mind, and this is a very important consideration, how often a species may have ranged continuously over a wide area, and then have become extinct in the intermediate tracts—the difficulty is not insuperable in believing that all the individuals of the same species, wherever found, are descended from common parents. And we are led to this conclusion, which has been arrived at by many naturalists under the designation of single centres of creation, by various general considerations, more especially from the importance of barriers of all kinds, and from the analogical distribution of subgenera, genera, and families. With respect to distinct species belonging to the same genus, which on our theory have spread from one parent-source; if we make the same allowances as before for our ignorance, and remember that some forms of life have changed very slowly, enormous periods of time having been thus granted for their migration, the difficulties are far from insuperable; though in this case, as in that of the individuals of the same species, they are often great. As exemplifying the effects of climatical changes on distribution, I have attempted to show how important a part the last Glacial period has played, which affected even the equatorial regions, and which, during the alternations of the cold in the north and the south, allowed the productions of opposite hemispheres to mingle, and left some of them stranded on the mountain-summits in all parts of the world. As showing how diversified are the means of occasional transport, I have discussed at some little length the means of dispersal of fresh-water productions. If the difficulties be not insuperable in admitting that in the long course of time all the individuals of the same species, and likewise of the several species belonging to the same genus, have proceeded from some one source; then all the grand leading facts of geographical distribution are explicable on the theory of migration, together with subsequent modification and the multiplication of new forms. We can thus understand the high importance of barriers, whether of land or water, in not only separating but in apparently forming the several zoological and botanical provinces. We can thus understand the concentration of related species within the same areas; and how it is that under different latitudes, for instance, in South America, the inhabitants of the plains and mountains, of the forests, marshes, and deserts, are linked together in so mysterious a manner, and are likewise linked to the extinct beings which formerly inhabited the same continent. Bearing in mind that the mutual relation of organism to organism is of the highest importance, we can see why two areas, having nearly the same physical conditions, should often be inhabited by very different forms of life; for according to the length of time which has elapsed since the colonists entered one of the regions, or both; according to the nature of the communication which allowed certain forms and not others to enter, either in greater or lesser numbers; according or not as those which entered happened to come into more or less direct competition with each other and with the aborigines; and according as the immigrants were capable of varying more or less rapidly, there would ensue in the to or more regions, independently of their physical conditions, infinitely diversified conditions of life; there would be an almost endless amount of organic action and reaction, and we should find some groups of beings greatly, and some only slightly modified; some developed in great force, some existing in scanty numbers—and this we do find in the several great geographical provinces of the world. On these same principles we can understand, as I have endeavoured to show, why oceanic islands should have few inhabitants, but that of these, a large proportion should be endemic or peculiar; and why, in relation to the means of migration, one group of beings should have all its species peculiar, and another group, even within the same class, should have all its species the same with those in an adjoining quarter of the world. We can see why whole groups of organisms, as batrachians and terrestrial mammals, should be absent from oceanic islands, whilst the most isolated islands should possess their own peculiar species of aërial mammals or bats. We can see why, in islands, there should be some relation between the presence of mammals, in a more or less modified condition, and the depth of the sea between such islands and the mainland. We can clearly see why all the inhabitants of an archipelago, though specifically distinct on the several islets, should be closely related to each other, and should likewise be related, but less closely, to those of the nearest continent, or other source whence immigrants might have been derived. We can see why, if there exist very closely allied or representative species in two areas, however distant from each other, some identical species will almost always there be found. As the late Edward Forbes often insisted, there is a striking parallelism in the laws of life throughout time and space; the laws governing the succession of forms in past times being nearly the same with those governing at the present time the differences in different areas. We see this in many facts. The endurance of each species and group of species is continuous in time; for the apparent exceptions to the rule are so few that they may fairly be attributed to our not having as yet discovered in an intermediate deposit certain forms which are absent in it, but which occur above and below: so in space, it certainly is the general rule that the area inhabited by a single species, or by a group of species, is continuous, and the exceptions, which are not rare, may, as I have attempted to show, be accounted for by former migrations under different circumstances, or through occasional means of transport, or by the species having become extinct in the intermediate tracts. Both in time and space species and groups of species have their points of maximum development. Groups of species, living during the same period of time, or living within the same area, are often characterised by trifling features in common, as of sculpture or colour. In looking to the long succession of past ages, as in looking to distant provinces throughout the world, we find that species in certain classes differ little from each other, whilst those in another class, or only in a different section of the same order, differ greatly from each other. In both time and space the lowly organised members of each class generally change less than the highly organised; but there are in both cases marked exceptions to the rule. According to our theory, these several relations throughout time and space are intelligible; for whether we look to the allied forms of life which have changed during successive ages, or to those which have changed after having migrated into distant quarters, in both cases they are connected by the same bond of ordinary generation; in both cases the laws of variation have been the same, and modifications have been accumulated by the same means of natural selection. CHAPTER XIV MUTUAL AFFINITIES OF ORGANIC BEINGS: MORPHOLOGY: EMBRYOLOGY: RUDIMENTARY ORGANS. Classification, groups subordinate to groups—Natural system—Rules and difficulties in classification, explained on the theory of descent with modification—Classification of varieties—Descent always used in classification—Analogical or adaptive characters—Affinities, general, complex and radiating—Extinction separates and defines groups—Morphology, between members of the same class, between parts of the same individual—Embryology, laws of, explained by variations not supervening at an early age, and being inherited at a corresponding age—Rudimentary organs; their origin explained—Summary. Classification. From the most remote period in the history of the world organic beings have been found to resemble each other in descending degrees, so that they can be classed in groups under groups. This classification is not arbitrary like the grouping of the stars in constellations. The existence of groups would have been of simple significance, if one group had been exclusively fitted to inhabit the land, and another the water; one to feed on flesh, another on vegetable matter, and so on; but the case is widely different, for it is notorious how commonly members of even the same subgroup have different habits. In the second and fourth chapters, on Variation and on Natural Selection, I have attempted to show that within each country it is the widely ranging, the much diffused and common, that is the dominant species, belonging to the larger genera in each class, which vary most. The varieties, or incipient species, thus produced, ultimately become converted into new and distinct species; and these, on the principle of inheritance, tend to produce other new and dominant species. Consequently the groups which are now large, and which generally include many dominant species, tend to go on increasing in size. I further attempted to show that from the varying descendants of each species trying to occupy as many and as different places as possible in the economy of nature, they constantly tend to diverge in character. This latter conclusion is supported by observing the great diversity of forms, which, in any small area, come into the closest competition, and by certain facts in naturalisation. I attempted also to show that there is a steady tendency in the forms which are increasing in number and diverging in character, to supplant and exterminate the preceding, less divergent and less improved forms. I request the reader to turn to the diagram illustrating the action, as formerly explained, of these several principles; and he will see that the inevitable result is, that the modified descendants proceeding from one progenitor become broken up into groups subordinate to groups. In the diagram each letter on the uppermost line may represent a genus including several species; and the whole of the genera along this upper line form together one class, for all are descended from one ancient parent, and, consequently, have inherited something in common. But the three genera on the left hand have, on this same principle, much in common, and form a subfamily, distinct from that containing the next two genera on the right hand, which diverged from a common parent at the fifth stage of descent. These five genera have also much in common, though less than when grouped in subfamilies; and they form a family distinct from that containing the three genera still further to the right hand, which diverged at an earlier period. And all these genera, descended from (A), form an order distinct from the genera descended from (I). So that we here have many species descended from a single progenitor grouped into genera; and the genera into subfamilies, families and orders, all under one great class. The grand fact of the natural subordination of organic beings in groups under groups, which, from its familiarity, does not always sufficiently strike us, is in my judgment thus explained. No doubt organic beings, like all other objects, can be classed in many ways, either artificially by single characters, or more naturally by a number of characters. We know, for instance, that minerals and the elemental substances can be thus arranged. In this case there is of course no relation to genealogical succession, and no cause can at present be assigned for their falling into groups. But with organic beings the case is different, and the view above given accords with their natural arrangement in group under group; and no other explanation has ever been attempted. Naturalists, as we have seen, try to arrange the species, genera and families in each class, on what is called the Natural System. But what is meant by this system? Some authors look at it merely as a scheme for arranging together those living objects which are most alike, and for separating those which are most unlike; or as an artificial method of enunciating, as briefly as possible, general propositions—that is, by one sentence to give the characters common, for instance, to all mammals, by another those common to all carnivora, by another those common to the dog-genus, and then, by adding a single sentence, a full description is given of each kind of dog. The ingenuity and utility of this system are indisputable. But many naturalists think that something more is meant by the Natural System; they believe that it reveals the plan of the Creator; but unless it be specified whether order in time or space, or both, or what else is meant by the plan of the Creator, it seems to me that nothing is thus added to our knowledge. Expressions such as that famous one by Linnæus, which we often meet with in a more or less concealed form, namely, that the characters do not make the genus, but that the genus gives the characters, seem to imply that some deeper bond is included in our classifications than mere resemblance. I believe that this is the case, and that community of descent—the one known cause of close similarity in organic beings—is the bond, which, though observed by various degrees of modification, is partially revealed to us by our classifications. Let us now consider the rules followed in classification, and the difficulties which are encountered on the view that classification either gives some unknown plan of creation, or is simply a scheme for enunciating general propositions and of placing together the forms most like each other. It might have been thought (and was in ancient times thought) that those parts of the structure which determined the habits of life, and the general place of each being in the economy of nature, would be of very high importance in classification. Nothing can be more false. No one regards the external similarity of a mouse to a shrew, of a dugong to a whale, of a whale to a fish, as of any importance. These resemblances, though so intimately connected with the whole life of the being, are ranked as merely “adaptive or analogical characters;” but to the consideration of these resemblances we shall recur. It may even be given as a general rule, that the less any part of the organisation is concerned with special habits, the more important it becomes for classification. As an instance: Owen, in speaking of the dugong, says, “The generative organs, being those which are most remotely related to the habits and food of an animal, I have always regarded as affording very clear indications of its true affinities. We are least likely in the modifications of these organs to mistake a merely adaptive for an essential character.” With plants how remarkable it is that the organs of vegetation, on which their nutrition and life depend, are of little signification; whereas the organs of reproduction, with their product the seed and embryo, are of paramount importance! So again, in formerly discussing certain morphological characters which are not functionally important, we have seen that they are often of the highest service in classification. This depends on their constancy throughout many allied groups; and their constancy chiefly depends on any slight deviations not having been preserved and accumulated by natural selection, which acts only on serviceable characters. That the mere physiological importance of an organ does not determine its classificatory value, is almost proved by the fact, that in allied groups, in which the same organ, as we have every reason to suppose, has nearly the same physiological value, its classificatory value is widely different. No naturalist can have worked at any group without being struck with this fact; and it has been fully acknowledged in the writings of almost every author. It will suffice to quote the highest authority, Robert Brown, who, in speaking of certain organs in the Proteaceæ, says their generic importance, “like that of all their parts, not only in this, but, as I apprehend in every natural family, is very unequal, and in some cases seems to be entirely lost.” Again, in another work he says, the genera of the Connaraceæ “differ in having one or more ovaria, in the existence or absence of albumen, in the imbricate or valvular æstivation. Any one of these characters singly is frequently of more than generic importance, though here even, when all taken together, they appear insufficient to separate Cnestis from Connarus.” To give an example among insects: in one great division of the Hymenoptera, the antennæ, as Westwood has remarked, are most constant in structure; in another division they differ much, and the differences are of quite subordinate value in classification; yet no one will say that the antennæ in these two divisions of the same order are of unequal physiological importance. Any number of instances could be given of the varying importance for classification of the same important organ within the same group of beings. Again, no one will say that rudimentary or atrophied organs are of high physiological or vital importance; yet, undoubtedly, organs in this condition are often of much value in classification. No one will dispute that the rudimentary teeth in the upper jaws of young ruminants, and certain rudimentary bones of the leg, are highly serviceable in exhibiting the close affinity between Ruminants and Pachyderms. Robert Brown has strongly insisted on the fact that the position of the rudimentary florets is of the highest importance in the classification of the Grasses. Numerous instances could be given of characters derived from parts which must be considered of very trifling physiological importance, but which are universally admitted as highly serviceable in the definition of whole groups. For instance, whether or not there is an open passage from the nostrils to the mouth, the only character, according to Owen, which absolutely distinguishes fishes and reptiles—the inflection of the angle of the lower jaw in Marsupials—the manner in which the wings of insects are folded—mere colour in certain Algæ—mere pubescence on parts of the flower in grasses—the nature of the dermal covering, as hair or feathers, in the Vertebrata. If the Ornithorhynchus had been covered with feathers instead of hair, this external and trifling character would have been considered by naturalists as an important aid in determining the degree of affinity of this strange creature to birds. The importance, for classification, of trifling characters, mainly depends on their being correlated with many other characters of more or less importance. The value indeed of an aggregate of characters is very evident in natural history. Hence, as has often been remarked, a species may depart from its allies in several characters, both of high physiological importance, and of almost universal prevalence, and yet leave us in no doubt where it should be ranked. Hence, also, it has been found that a classification founded on any single character, however important that may be, has always failed; for no part of the organisation is invariably constant. The importance of an aggregate of characters, even when none are important, alone explains the aphorism enunciated by Linnæus, namely, that the characters do not give the genus, but the genus gives the character; for this seems founded on the appreciation of many trifling points of resemblance, too slight to be defined. Certain plants, belonging to the Malpighiaceæ, bear perfect and degraded flowers; in the latter, as A. de Jussieu has remarked, “The greater number of the characters proper to the species, to the genus, to the family, to the class, disappear, and thus laugh at our classification.” When Aspicarpa produced in France, during several years, only these degraded flowers, departing so wonderfully in a number of the most important points of structure from the proper type of the order, yet M. Richard sagaciously saw, as Jussieu observes, that this genus should still be retained among the Malpighiaceæ. This case well illustrates the spirit of our classifications. Practically, when naturalists are at work, they do not trouble themselves about the physiological value of the characters which they use in defining a group or in allocating any particular species. If they find a character nearly uniform, and common to a great number of forms, and not common to others, they use it as one of high value; if common to some lesser number, they use it as of subordinate value. This principle has been broadly confessed by some naturalists to be the true one; and by none more clearly than by that excellent botanist, Aug. St. Hilaire. If several trifling characters are always found in combination, though no apparent bond of connexion can be discovered between them, especial value is set on them. As in most groups of animals, important organs, such as those for propelling the blood, or for aerating it, or those for propagating the race, are found nearly uniform, they are considered as highly serviceable in classification; but in some groups all these, the most important vital organs, are found to offer characters of quite subordinate value. Thus, as Fritz Müller has lately remarked, in the same group of crustaceans, Cypridina is furnished with a heart, while in two closely allied genera, namely Cypris and Cytherea, there is no such organ; one species of Cypridina has well-developed branchiæ, while another species is destitute of them. We can see why characters derived from the embryo should be of equal importance with those derived from the adult, for a natural classification of course includes all ages. But it is by no means obvious, on the ordinary view, why the structure of the embryo should be more important for this purpose than that of the adult, which alone plays its full part in the economy of nature. Yet it has been strongly urged by those great naturalists, Milne Edwards and Agassiz, that embryological characters are the most important of all; and this doctrine has very generally been admitted as true. Nevertheless, their importance has sometimes been exaggerated, owing to the adaptive characters of larvæ not having been excluded; in order to show this, Fritz Müller arranged, by the aid of such characters alone, the great class of crustaceans, and the arrangement did not prove a natural one. But there can be no doubt that embryonic, excluding larval characters, are of the highest value for classification, not only with animals but with plants. Thus the main divisions of flowering plants are founded on differences in the embryo—on the number and position of the cotyledons, and on the mode of development of the plumule and radicle. We shall immediately see why these characters possess so high a value in classification, namely, from the natural system being genealogical in its arrangement. Our classifications are often plainly influenced by chains of affinities. Nothing can be easier than to define a number of characters common to all birds; but with crustaceans, any such definition has hitherto been found impossible. There are crustaceans at the opposite ends of the series, which have hardly a character in common; yet the species at both ends, from being plainly allied to others, and these to others, and so onwards, can be recognised as unequivocally belonging to this, and to no other class of the Articulata. Geographical distribution has often been used, though perhaps not quite logically, in classification, more especially in very large groups of closely allied forms. Temminck insists on the utility or even necessity of this practice in certain groups of birds; and it has been followed by several entomologists and botanists. Finally, with respect to the comparative value of the various groups of species, such as orders, suborders, families, subfamilies, and genera, they seem to be, at least at present, almost arbitrary. Several of the best botanists, such as Mr. Bentham and others, have strongly insisted on their arbitrary value. Instances could be given among plants and insects, of a group first ranked by practised naturalists as only a genus, and then raised to the rank of a subfamily or family; and this has been done, not because further research has detected important structural differences, at first overlooked, but because numerous allied species, with slightly different grades of difference, have been subsequently discovered. All the foregoing rules and aids and difficulties in classification may be explained, if I do not greatly deceive myself, on the view that the natural system is founded on descent with modification—that the characters which naturalists consider as showing true affinity between any two or more species, are those which have been inherited from a common parent, all true classification being genealogical—that community of descent is the hidden bond which naturalists have been unconsciously seeking, and not some unknown plan of creation, or the enunciation of general propositions, and the mere putting together and separating objects more or less alike. But I must explain my meaning more fully. I believe that the arrangement of the groups within each class, in due subordination and relation to each other, must be strictly genealogical in order to be natural; but that the amount of difference in the several branches or groups, though allied in the same degree in blood to their common progenitor, may differ greatly, being due to the different degrees of modification which they have undergone; and this is expressed by the forms being ranked under different genera, families, sections or orders. The reader will best understand what is meant, if he will take the trouble to refer to the diagram in the fourth chapter. We will suppose the letters A to L to represent allied genera existing during the Silurian epoch, and descended from some still earlier form. In three of these genera (A, F, and I) a species has transmitted modified descendants to the present day, represented by the fifteen genera (a14 to z14) on the uppermost horizontal line. Now, all these modified descendants from a single species are related in blood or descent in the same degree. They may metaphorically be called cousins to the same millionth degree, yet they differ widely and in different degrees from each other. The forms descended from A, now broken up into two or three families, constitute a distinct order from those descended from I, also broken up into two families. Nor can the existing species descended from A be ranked in the same genus with the parent A, or those from I with parent I. But the existing genus F14 may be supposed to have been but slightly modified, and it will then rank with the parent genus F; just as some few still living organisms belong to Silurian genera. So that the comparative value of the differences between these organic beings, which are all related to each other in the same degree in blood, has come to be widely different. Nevertheless, their genealogical arrangement remains strictly true, not only at the present time, but at each successive period of descent. All the modified descendants from A will have inherited something in common from their common parent, as will all the descendants from I; so will it be with each subordinate branch of descendants at each successive stage. If, however, we suppose any descendant of A or of I to have become so much modified as to have lost all traces of its parentage in this case, its place in the natural system will be lost, as seems to have occurred with some few existing organisms. All the descendants of the genus F, along its whole line of descent, are supposed to have been but little modified, and they form a single genus. But this genus, though much isolated, will still occupy its proper intermediate position. The representation of the groups as here given in the diagram on a flat surface, is much too simple. The branches ought to have diverged in all directions. If the names of the groups had been simply written down in a linear series the representation would have been still less natural; and it is notoriously not possible to represent in a series, on a flat surface, the affinities which we discover in nature among the beings of the same group. Thus, the natural system is genealogical in its arrangement, like a pedigree. But the amount of modification which the different groups have undergone has to be expressed by ranking them under different so-called genera, subfamilies, families, sections, orders, and classes. It may be worth while to illustrate this view of classification, by taking the case of languages. If we possessed a perfect pedigree of mankind, a genealogical arrangement of the races of man would afford the best classification of the various languages now spoken throughout the world; and if all extinct languages, and all intermediate and slowly changing dialects, were to be included, such an arrangement would be the only possible one. Yet it might be that some ancient languages had altered very little and had given rise to few new languages, whilst others had altered much owing to the spreading, isolation and state of civilisation of the several co-descended races, and had thus given rise to many new dialects and languages. The various degrees of difference between the languages of the same stock would have to be expressed by groups subordinate to groups; but the proper or even the only possible arrangement would still be genealogical; and this would be strictly natural, as it would connect together all languages, extinct and recent, by the closest affinities, and would give the filiation and origin of each tongue. In confirmation of this view, let us glance at the classification of varieties, which are known or believed to be descended from a single species. These are grouped under the species, with the subvarieties under the varieties; and in some cases, as with the domestic pigeon, with several other grades of difference. Nearly the same rules are followed as in classifying species. Authors have insisted on the necessity of arranging varieties on a natural instead of an artificial system; we are cautioned, for instance, not to class two varieties of the pine-apple together, merely because their fruit, though the most important part, happens to be nearly identical; no one puts the Swedish and common turnip together, though the esculent and thickened stems are so similar. Whatever part is found to be most constant, is used in classing varieties: thus the great agriculturist Marshall says the horns are very useful for this purpose with cattle, because they are less variable than the shape or colour of the body, &c.; whereas with sheep the horns are much less serviceable, because less constant. In classing varieties, I apprehend that if we had a real pedigree, a genealogical classification would be universally preferred; and it has been attempted in some cases. For we might feel sure, whether there had been more or less modification, that the principle of inheritance would keep the forms together which were allied in the greatest number of points. In tumbler pigeons, though some of the subvarieties differ in the important character of the length of the beak, yet all are kept together from having the common habit of tumbling; but the short-faced breed has nearly or quite lost this habit; nevertheless, without any thought on the subject, these tumblers are kept in the same group, because allied in blood and alike in some other respects. With species in a state of nature, every naturalist has in fact brought descent into his classification; for he includes in his lowest grade, that of species, the two sexes; and how enormously these sometimes differ in the most important characters is known to every naturalist: scarcely a single fact can be predicated in common of the adult males and hermaphrodites of certain cirripedes, and yet no one dreams of separating them. As soon as the three Orchidean forms, Monachanthus, Myanthus, and Catasetum, which had previously been ranked as three distinct genera, were known to be sometimes produced on the same plant, they were immediately considered as varieties; and now I have been able to show that they are the male, female, and hermaphrodite forms of the same species. The naturalist includes as one species the various larval stages of the same individual, however much they may differ from each other and from the adult; as well as the so-called alternate generations of Steenstrup, which can only in a technical sense be considered as the same individual. He includes monsters and varieties, not from their partial resemblance to the parent-form, but because they are descended from it. As descent has universally been used in classing together the individuals of the same species, though the males and females and larvæ are sometimes extremely different; and as it has been used in classing varieties which have undergone a certain, and sometimes a considerable amount of modification, may not this same element of descent have been unconsciously used in grouping species under genera, and genera under higher groups, all under the so-called natural system? I believe it has been unconsciously used; and thus only can I understand the several rules and guides which have been followed by our best systematists. As we have no written pedigrees, we are forced to trace community of descent by resemblances of any kind. Therefore, we choose those characters which are the least likely to have been modified, in relation to the conditions of life to which each species has been recently exposed. Rudimentary structures on this view are as good as, or even sometimes better than other parts of the organisation. We care not how trifling a character may be—let it be the mere inflection of the angle of the jaw, the manner in which an insect’s wing is folded, whether the skin be covered by hair or feathers—if it prevail throughout many and different species, especially those having very different habits of life, it assumes high value; for we can account for its presence in so many forms with such different habits, only by inheritance from a common parent. We may err in this respect in regard to single points of structure, but when several characters, let them be ever so trifling, concur throughout a large group of beings having different habits, we may feel almost sure, on the theory of descent, that these characters have been inherited from a common ancestor; and we know that such aggregated characters have especial value in classification. We can understand why a species or a group of species may depart from its allies, in several of its most important characteristics, and yet be safely classed with them. This may be safely done, and is often done, as long as a sufficient number of characters, let them be ever so unimportant, betrays the hidden bond of community of descent. Let two forms have not a single character in common, yet, if these extreme forms are connected together by a chain of intermediate groups, we may at once infer their community of descent, and we put them all into the same class. As we find organs of high physiological importance—those which serve to preserve life under the most diverse conditions of existence—are generally the most constant, we attach especial value to them; but if these same organs, in another group or section of a group, are found to differ much, we at once value them less in our classification. We shall presently see why embryological characters are of such high classificatory importance. Geographical distribution may sometimes be brought usefully into play in classing large genera, because all the species of the same genus, inhabiting any distinct and isolated region, are in all probability descended from the same parents. Analogical Resemblances.—We can understand, on the above views, the very important distinction between real affinities and analogical or adaptive resemblances. Lamarck first called attention to this subject, and he has been ably followed by Macleay and others. The resemblance in the shape of the body and in the fin-like anterior limbs between dugongs and whales, and between these two orders of mammals and fishes, are analogical. So is the resemblance between a mouse and a shrew-mouse (Sorex), which belong to different orders; and the still closer resemblance, insisted on by Mr. Mivart, between the mouse and a small marsupial animal (Antechinus) of Australia. These latter resemblances may be accounted for, as it seems to me, by adaptation for similarly active movements through thickets and herbage, together with concealment from enemies. Among insects there are innumerable instances; thus Linnæus, misled by external appearances, actually classed an homopterous insect as a moth. We see something of the same kind even with our domestic varieties, as in the strikingly similar shape of the body in the improved breeds of the Chinese and common pig, which are descended from distinct species; and in the similarly thickened stems of the common and specifically distinct Swedish turnip. The resemblance between the greyhound and race-horse is hardly more fanciful than the analogies which have been drawn by some authors between widely different animals. On the view of characters being of real importance for classification, only in so far as they reveal descent, we can clearly understand why analogical or adaptive characters, although of the utmost importance to the welfare of the being, are almost valueless to the systematist. For animals, belonging to two most distinct lines of descent, may have become adapted to similar conditions, and thus have assumed a close external resemblance; but such resemblances will not reveal—will rather tend to conceal their blood-relationship. We can thus also understand the apparent paradox, that the very same characters are analogical when one group is compared with another, but give true affinities when the members of the same group are compared together: thus the shape of the body and fin-like limbs are only analogical when whales are compared with fishes, being adaptations in both classes for swimming through the water; but between the the several members of the whale family, the shape of the body and the fin-like limbs offer characters exhibiting true affinity; for as these parts are so nearly similar throughout the whole family, we cannot doubt that they have been inherited from a common ancestor. So it is with fishes. Numerous cases could be given of striking resemblances in quite distinct beings between single parts or organs, which have been adapted for the same functions. A good instance is afforded by the close resemblance of the jaws of the dog and Tasmanian wolf or Thylacinus—animals which are widely sundered in the natural system. But this resemblance is confined to general appearance, as in the prominence of the canines, and in the cutting shape of the molar teeth. For the teeth really differ much: thus the dog has on each side of the upper jaw four pre-molars and only two molars; while the Thylacinus has three pre-molars and four molars. The molars also differ much in the two animals in relative size and structure. The adult dentition is preceded by a widely different milk dentition. Any one may, of course, deny that the teeth in either case have been adapted for tearing flesh, through the natural selection of successive variations; but if this be admitted in the one case, it is unintelligible to me that it should be denied in the other. I am glad to find that so high an authority as Professor Flower has come to this same conclusion. The extraordinary cases given in a former chapter, of widely different fishes possessing electric organs—of widely different insects possessing luminous organs—and of orchids and asclepiads having pollen-masses with viscid discs, come under this same head of analogical resemblances. But these cases are so wonderful that they were introduced as difficulties or objections to our theory. In all such cases some fundamental difference in the growth or development of the parts, and generally in their matured structure, can be detected. The end gained is the same, but the means, though appearing superficially to be the same, are essentially different. The principle formerly alluded to under the term of analogical variation has probably in these cases often come into play; that is, the members of the same class, although only distantly allied, have inherited so much in common in their constitution, that they are apt to vary under similar exciting causes in a similar manner; and this would obviously aid in the acquirement through natural selection of parts or organs, strikingly like each other, independently of their direct inheritance from a common progenitor. As species belonging to distinct classes have often been adapted by successive slight modifications to live under nearly similar circumstances—to inhabit, for instance, the three elements of land, air and water—we can perhaps understand how it is that a numerical parallelism has sometimes been observed between the subgroups of distinct classes. A naturalist, struck with a parallelism of this nature, by arbitrarily raising or sinking the value of the groups in several classes (and all our experience shows that their valuation is as yet arbitrary), could easily extend the parallelism over a wide range; and thus the septenary, quinary, quaternary and ternary classifications have probably arisen. There is another and curious class of cases in which close external resemblance does not depend on adaptation to similar habits of life, but has been gained for the sake of protection. I allude to the wonderful manner in which certain butterflies imitate, as first described by Mr. Bates, other and quite distinct species. This excellent observer has shown that in some districts of South America, where, for instance, an Ithomia abounds in gaudy swarms, another butterfly, namely, a Leptalis, is often found mingled in the same flock; and the latter so closely resembles the Ithomia in every shade and stripe of colour, and even in the shape of its wings, that Mr. Bates, with his eyes sharpened by collecting during eleven years, was, though always on his guard, continually deceived. When the mockers and the mocked are caught and compared, they are found to be very different in essential structure, and to belong not only to distinct genera, but often to distinct families. Had this mimicry occurred in only one or two instances, it might have been passed over as a strange coincidence. But, if we proceed from a district where one Leptalis imitates an Ithomia, another mocking and mocked species, belonging to the same two genera, equally close in their resemblance, may be found. Altogether no less than ten genera are enumerated, which include species that imitate other butterflies. The mockers and mocked always inhabit the same region; we never find an imitator living remote from the form which it imitates. The mockers are almost invariably rare insects; the mocked in almost every case abounds in swarms. In the same district in which a species of Leptalis closely imitates an Ithomia, there are sometimes other Lepidoptera mimicking the same Ithomia: so that in the same place, species of three genera of butterflies and even a moth are found all closely resembling a butterfly belonging to a fourth genus. It deserves especial notice that many of the mimicking forms of the Leptalis, as well as of the mimicked forms, can be shown by a graduated series to be merely varieties of the same species; while others are undoubtedly distinct species. But why, it may be asked, are certain forms treated as the mimicked and others as the mimickers? Mr. Bates satisfactorily answers this question by showing that the form which is imitated keeps the usual dress of the group to which it belongs, while the counterfeiters have changed their dress and do not resemble their nearest allies. We are next led to enquire what reason can be assigned for certain butterflies and moths so often assuming the dress of another and quite distinct form; why, to the perplexity of naturalists, has nature condescended to the tricks of the stage? Mr. Bates has, no doubt, hit on the true explanation. The mocked forms, which always abound in numbers, must habitually escape destruction to a large extent, otherwise they could not exist in such swarms; and a large amount of evidence has now been collected, showing that they are distasteful to birds and other insect-devouring animals. The mocking forms, on the other hand, that inhabit the same district, are comparatively rare, and belong to rare groups; hence, they must suffer habitually from some danger, for otherwise, from the number of eggs laid by all butterflies, they would in three or four generations swarm over the whole country. Now if a member of one of these persecuted and rare groups were to assume a dress so like that of a well-protected species that it continually deceived the practised eyes of an entomologist, it would often deceive predaceous birds and insects, and thus often escape destruction. Mr. Bates may almost be said to have actually witnessed the process by which the mimickers have come so closely to resemble the mimicked; for he found that some of the forms of Leptalis which mimic so many other butterflies, varied in an extreme degree. In one district several varieties occurred, and of these one alone resembled, to a certain extent, the common Ithomia of the same district. In another district there were two or three varieties, one of which was much commoner than the others, and this closely mocked another form of Ithomia. From facts of this nature, Mr. Bates concludes that the Leptalis first varies; and when a variety happens to resemble in some degree any common butterfly inhabiting the same district, this variety, from its resemblance to a flourishing and little persecuted kind, has a better chance of escaping destruction from predaceous birds and insects, and is consequently oftener preserved; “the less perfect degrees of resemblance being generation after generation eliminated, and only the others left to propagate their kind.” So that here we have an excellent illustration of natural selection. Messrs. Wallace and Trimen have likewise described several equally striking cases of imitation in the Lepidoptera of the Malay Archipelago and Africa, and with some other insects. Mr. Wallace has also detected one such case with birds, but we have none with the larger quadrupeds. The much greater frequency of imitation with insects than with other animals, is probably the consequence of their small size; insects cannot defend themselves, excepting indeed the kinds furnished with a sting, and I have never heard of an instance of such kinds mocking other insects, though they are mocked; insects cannot easily escape by flight from the larger animals which prey on them; therefore, speaking metaphorically, they are reduced, like most weak creatures, to trickery and dissimulation. It should be observed that the process of imitation probably never commenced between forms widely dissimilar in colour. But, starting with species already somewhat like each other, the closest resemblance, if beneficial, could readily be gained by the above means, and if the imitated form was subsequently and gradually modified through any agency, the imitating form would be led along the same track, and thus be altered to almost any extent, so that it might ultimately assume an appearance or colouring wholly unlike that of the other members of the family to which it belonged. There is, however, some difficulty on this head, for it is necessary to suppose in some cases that ancient members belonging to several distinct groups, before they had diverged to their present extent, accidentally resembled a member of another and protected group in a sufficient degree to afford some slight protection, this having given the basis for the subsequent acquisition of the most perfect resemblance. On the Nature of the Affinities connecting Organic Beings.—As the modified descendants of dominant species, belonging to the larger genera, tend to inherit the advantages which made the groups to which they belong large and their parents dominant, they are almost sure to spread widely, and to seize on more and more places in the economy of nature. The larger and more dominant groups within each class thus tend to go on increasing in size, and they consequently supplant many smaller and feebler groups. Thus, we can account for the fact that all organisms, recent and extinct, are included under a few great orders and under still fewer classes. As showing how few the higher groups are in number, and how widely they are spread throughout the world, the fact is striking that the discovery of Australia has not added an insect belonging to a new class, and that in the vegetable kingdom, as I learn from Dr. Hooker, it has added only two or three families of small size. In the chapter on geological succession I attempted to show, on the principle of each group having generally diverged much in character during the long-continued process of modification, how it is that the more ancient forms of life often present characters in some degree intermediate between existing groups. As some few of the old and intermediate forms having transmitted to the present day descendants but little modified, these constitute our so-called osculant or aberrant groups. The more aberrant any form is, the greater must be the number of connecting forms which have been exterminated and utterly lost. And we have evidence of aberrant groups having suffered severely from extinction, for they are almost always represented by extremely few species; and such species as do occur are generally very distinct from each other, which again implies extinction. The genera Ornithorhynchus and Lepidosiren, for example, would not have been less aberrant had each been represented by a dozen species, instead of as at present by a single one, or by two or three. We can, I think, account for this fact only by looking at aberrant groups as forms which have been conquered by more successful competitors, with a few members still preserved under unusually favourable conditions. Mr. Waterhouse has remarked that when a member belonging to one group of animals exhibits an affinity to a quite distinct group, this affinity in most cases is general and not special: thus, according to Mr. Waterhouse, of all Rodents, the bizcacha is most nearly related to Marsupials; but in the points in which it approaches this order, its relations are general, that is, not to any one Marsupial species more than to another. As these points of affinity are believed to be real and not merely adaptive, they must be due in accordance with our view to inheritance from a common progenitor. Therefore, we must suppose either that all Rodents, including the bizcacha, branched off from some ancient Marsupial, which will naturally have been more or less intermediate in character with respect to all existing Marsupials; or that both Rodents and Marsupials branched off from a common progenitor, and that both groups have since undergone much modification in divergent directions. On either view we must suppose that the bizcacha has retained, by inheritance, more of the character of its ancient progenitor than have other Rodents; and therefore it will not be specially related to any one existing Marsupial, but indirectly to all or nearly all Marsupials, from having partially retained the character of their common progenitor, or of some early member of the group. On the other hand, of all Marsupials, as Mr. Waterhouse has remarked, the Phascolomys resembles most nearly, not any one species, but the general order of Rodents. In this case, however, it may be strongly suspected that the resemblance is only analogical, owing to the Phascolomys having become adapted to habits like those of a Rodent. The elder De Candolle has made nearly similar observations on the general nature of the affinities of distinct families of plants. On the principle of the multiplication and gradual divergence in character of the species descended from a common progenitor, together with their retention by inheritance of some characters in common, we can understand the excessively complex and radiating affinities by which all the members of the same family or higher group are connected together. For the common progenitor of a whole family, now broken up by extinction into distinct groups and subgroups, will have transmitted some of its characters, modified in various ways and degrees, to all the species; and they will consequently be related to each other by circuitous lines of affinity of various lengths (as may be seen in the diagram so often referred to), mounting up through many predecessors. As it is difficult to show the blood-relationship between the numerous kindred of any ancient and noble family, even by the aid of a genealogical tree, and almost impossible to do so without this aid, we can understand the extraordinary difficulty which naturalists have experienced in describing, without the aid of a diagram, the various affinities which they perceive between the many living and extinct members of the same great natural class. Extinction, as we have seen in the fourth chapter, has played an important part in defining and widening the intervals between the several groups in each class. We may thus account for the distinctness of whole classes from each other—for instance, of birds from all other vertebrate animals—by the belief that many ancient forms of life have been utterly lost, through which the early progenitors of birds were formerly connected with the early progenitors of the other and at that time less differentiated vertebrate classes. There has been much less extinction of the forms of life which once connected fishes with Batrachians. There has been still less within some whole classes, for instance the Crustacea, for here the most wonderfully diverse forms are still linked together by a long and only partially broken chain of affinities. Extinction has only defined the groups: it has by no means made them; for if every form which has ever lived on this earth were suddenly to reappear, though it would be quite impossible to give definitions by which each group could be distinguished, still a natural classification, or at least a natural arrangement, would be possible. We shall see this by turning to the diagram: the letters, A to L, may represent eleven Silurian genera, some of which have produced large groups of modified descendants, with every link in each branch and sub-branch still alive; and the links not greater than those between existing varieties. In this case it would be quite impossible to give definitions by which the several members of the several groups could be distinguished from their more immediate parents and descendants. Yet the arrangement in the diagram would still hold good and would be natural; for, on the principle of inheritance, all the forms descended, for instance from A, would have something in common. In a tree we can distinguish this or that branch, though at the actual fork the two unite and blend together. We could not, as I have said, define the several groups; but we could pick out types, or forms, representing most of the characters of each group, whether large or small, and thus give a general idea of the value of the differences between them. This is what we should be driven to, if we were ever to succeed in collecting all the forms in any one class which have lived throughout all time and space. Assuredly we shall never succeed in making so perfect a collection: nevertheless, in certain classes, we are tending toward this end; and Milne Edwards has lately insisted, in an able paper, on the high importance of looking to types, whether or not we can separate and define the groups to which such types belong. Finally, we have seen that natural selection, which follows from the struggle for existence, and which almost inevitably leads to extinction and divergence of character in the descendants from any one parent-species, explains that great and universal feature in the affinities of all organic beings, namely, their subordination in group under group. We use the element of descent in classing the individuals of both sexes and of all ages under one species, although they may have but few characters in common; we use descent in classing acknowledged varieties, however different they may be from their parents; and I believe that this element of descent is the hidden bond of connexion which naturalists have sought under the term of the Natural System. On this idea of the natural system being, in so far as it has been perfected, genealogical in its arrangement, with the grades of difference expressed by the terms genera, families, orders, &c., we can understand the rules which we are compelled to follow in our classification. We can understand why we value certain resemblances far more than others; why we use rudimentary and useless organs, or others of trifling physiological importance; why, in finding the relations between one group and another, we summarily reject analogical or adaptive characters, and yet use these same characters within the limits of the same group. We can clearly see how it is that all living and extinct forms can be grouped together within a few great classes; and how the several members of each class are connected together by the most complex and radiating lines of affinities. We shall never, probably, disentangle the inextricable web of the affinities between the members of any one class; but when we have a distinct object in view, and do not look to some unknown plan of creation, we may hope to make sure but slow progress. Professor Haeckel in his “Generelle Morphologie” and in another works, has recently brought his great knowledge and abilities to bear on what he calls phylogeny, or the lines of descent of all organic beings. In drawing up the several series he trusts chiefly to embryological characters, but receives aid from homologous and rudimentary organs, as well as from the successive periods at which the various forms of life are believed to have first appeared in our geological formations. He has thus boldly made a great beginning, and shows us how classification will in the future be treated. Morphology. We have seen that the members of the same class, independently of their habits of life, resemble each other in the general plan of their organisation. This resemblance is often expressed by the term “unity of type;” or by saying that the several parts and organs in the different species of the class are homologous. The whole subject is included under the general term of Morphology. This is one of the most interesting departments of natural history, and may almost be said to be its very soul. What can be more curious than that the hand of a man, formed for grasping, that of a mole for digging, the leg of the horse, the paddle of the porpoise, and the wing of the bat, should all be constructed on the same pattern, and should include similar bones, in the same relative positions? How curious it is, to give a subordinate though striking instance, that the hind feet of the kangaroo, which are so well fitted for bounding over the open plains—those of the climbing, leaf-eating koala, equally well fitted for grasping the branches of trees—those of the ground-dwelling, insect or root-eating, bandicoots—and those of some other Australian marsupials—should all be constructed on the same extraordinary type, namely with the bones of the second and third digits extremely slender and enveloped within the same skin, so that they appear like a single toe furnished with two claws. Notwithstanding this similarity of pattern, it is obvious that the hind feet of these several animals are used for as widely different purposes as it is possible to conceive. The case is rendered all the more striking by the American opossums, which follow nearly the same habits of life as some of their Australian relatives, having feet constructed on the ordinary plan. Professor Flower, from whom these statements are taken, remarks in conclusion: “We may call this conformity to type, without getting much nearer to an explanation of the phenomenon;” and he then adds “but is it not powerfully suggestive of true relationship, of inheritance from a common ancestor?” Geoffroy St. Hilaire has strongly insisted on the high importance of relative position or connexion in homologous parts; they may differ to almost any extent in form and size, and yet remain connected together in the same invariable order. We never find, for instance, the bones of the arm and forearm, or of the thigh and leg, transposed. Hence the same names can be given to the homologous bones in widely different animals. We see the same great law in the construction of the mouths of insects: what can be more different than the immensely long spiral proboscis of a sphinx-moth, the curious folded one of a bee or bug, and the great jaws of a beetle? Yet all these organs, serving for such widely different purposes, are formed by infinitely numerous modifications of an upper lip, mandibles, and two pairs of maxillæ. The same law governs the construction of the mouths and limbs of crustaceans. So it is with the flowers of plants. Nothing can be more hopeless than to attempt to explain this similarity of pattern in members of the same class, by utility or by the doctrine of final causes. The hopelessness of the attempt has been expressly admitted by Owen in his most interesting work on the “Nature of Limbs.” On the ordinary view of the independent creation of each being, we can only say that so it is; that it has pleased the Creator to construct all the animals and plants in each great class on a uniform plan; but this is not a scientific explanation. The explanation is to a large extent simple, on the theory of the selection of successive slight modifications, each being profitable in some way to the modified form, but often affecting by correlation other parts of the organisation. In changes of this nature, there will be little or no tendency to alter the original pattern, or to transpose the parts. The bones of a limb might be shortened and flattened to any extent, becoming at the same time enveloped in thick membrane, so as to serve as a fin; or a webbed hand might have all its bones, or certain bones, lengthened to any extent, with the membrane connecting them increased, so as to serve as a wing; yet all these modifications would not tend to alter the framework of the bones or the relative connexion of the parts. If we suppose that an early progenitor—the archetype, as it may be called—of all mammals, birds and reptiles, had its limbs constructed on the existing general pattern, for whatever purpose they served, we can at once perceive the plain signification of the homologous construction of the limbs throughout the class. So with the mouths of insects, we have only to suppose that their common progenitor had an upper lip, mandibles, and two pairs of maxillæ, these parts being perhaps very simple in form; and then natural selection will account for the infinite diversity in structure and function of the mouths of insects. Nevertheless, it is conceivable that the general pattern of an organ might become so much obscured as to be finally lost, by the reduction and ultimately by the complete abortion of certain parts, by the fusion of other parts, and by the doubling or multiplication of others, variations which we know to be within the limits of possibility. In the paddles of the gigantic extinct sea-lizards, and in the mouths of certain suctorial crustaceans, the general pattern seems thus to have become partially obscured. There is another and equally curious branch of our subject; namely, serial homologies, or the comparison of the different parts or organs in the same individual, and not of the same parts or organs in different members of the same class. Most physiologists believe that the bones of the skull are homologous—that is, correspond in number and in relative connexion—with the elemental parts of a certain number of vertebræ. The anterior and posterior limbs in all the higher vertebrate classes are plainly homologous. So it is with the wonderfully complex jaws and legs of crustaceans. It is familiar to almost every one, that in a flower the relative position of the sepals, petals, stamens, and pistils, as well as their intimate structure, are intelligible on the view that they consist of metamorphosed leaves, arranged in a spire. In monstrous plants, we often get direct evidence of the possibility of one organ being transformed into another; and we can actually see, during the early or embryonic stages of development in flowers, as well as in crustaceans and many other animals, that organs, which when mature become extremely different are at first exactly alike. How inexplicable are the cases of serial homologies on the ordinary view of creation! Why should the brain be enclosed in a box composed of such numerous and such extraordinarily shaped pieces of bone apparently representing vertebræ? As Owen has remarked, the benefit derived from the yielding of the separate pieces in the act of parturition by mammals, will by no means explain the same construction in the skulls of birds and reptiles. Why should similar bones have been created to form the wing and the leg of a bat, used as they are for such totally different purposes, namely flying and walking? Why should one crustacean, which has an extremely complex mouth formed of many parts, consequently always have fewer legs; or conversely, those with many legs have simpler mouths? Why should the sepals, petals, stamens, and pistils, in each flower, though fitted for such distinct purposes, be all constructed on the same pattern? On the theory of natural selection, we can, to a certain extent, answer these questions. We need not here consider how the bodies of some animals first became divided into a series of segments, or how they became divided into right and left sides, with corresponding organs, for such questions are almost beyond investigation. It is, however, probable that some serial structures are the result of cells multiplying by division, entailing the multiplication of the parts developed from such cells. It must suffice for our purpose to bear in mind that an indefinite repetition of the same part or organ is the common characteristic, as Owen has remarked, of all low or little specialised forms; therefore the unknown progenitor of the Vertebrata probably possessed many vertebræ; the unknown progenitor of the Articulata, many segments; and the unknown progenitor of flowering plants, many leaves arranged in one or more spires. We have also formerly seen that parts many times repeated are eminently liable to vary, not only in number, but in form. Consequently such parts, being already present in considerable numbers, and being highly variable, would naturally afford the materials for adaptation to the most different purposes; yet they would generally retain, through the force of inheritance, plain traces of their original or fundamental resemblance. They would retain this resemblance all the more, as the variations, which afforded the basis for their subsequent modification through natural selection, would tend from the first to be similar; the parts being at an early stage of growth alike, and being subjected to nearly the same conditions. Such parts, whether more or less modified, unless their common origin became wholly obscured, would be serially homologous. In the great class of molluscs, though the parts in distinct species can be shown to be homologous, only a few serial homologies; such as the valves of Chitons, can be indicated; that is, we are seldom enabled to say that one part is homologous with another part in the same individual. And we can understand this fact; for in molluscs, even in the lowest members of the class, we do not find nearly so much indefinite repetition of any one part as we find in the other great classes of the animal and vegetable kingdoms. But morphology is a much more complex subject than it at first appears, as has lately been well shown in a remarkable paper by Mr. E. Ray Lankester, who has drawn an important distinction between certain classes of cases which have all been equally ranked by naturalists as homologous. He proposes to call the structures which resemble each other in distinct animals, owing to their descent from a common progenitor with subsequent modification, homogenous; and the resemblances which cannot thus be accounted for, he proposes to call homoplastic. For instance, he believes that the hearts of birds and mammals are as a whole homogenous—that is, have been derived from a common progenitor; but that the four cavities of the heart in the two classes are homoplastic—that is, have been independently developed. Mr. Lankester also adduces the close resemblance of the parts on the right and left sides of the body, and in the successive segments of the same individual animal; and here we have parts commonly called homologous which bear no relation to the descent of distinct species from a common progenitor. Homoplastic structures are the same with those which I have classed, though in a very imperfect manner, as analogous modifications or resemblances. Their formation may be attributed in part to distinct organisms, or to distinct parts of the same organism, having varied in an analogous manner; and in part to similar modifications, having been preserved for the same general purpose or function, of which many instances have been given. Naturalists frequently speak of the skull as formed of metamorphosed vertebræ; the jaws of crabs as metamorphosed legs; the stamens and pistils in flowers as metamorphosed leaves; but it would in most cases be more correct, as Professor Huxley has remarked, to speak of both skull and vertebræ, jaws and legs, &c., as having been metamorphosed, not one from the other, as they now exist, but from some common and simpler element. Most naturalists, however, use such language only in a metaphorical sense: they are far from meaning that during a long course of descent, primordial organs of any kind—vertebræ in the one case and legs in the other—have actually been converted into skulls or jaws. Yet so strong is the appearance of this having occurred that naturalists can hardly avoid employing language having this plain signification. According to the views here maintained, such language may be used literally; and the wonderful fact of the jaws, for instance, of a crab retaining numerous characters, which they probably would have retained through inheritance, if they had really been metamorphosed from true though extremely simple legs, is in part explained. Development and Embryology. This is one of the most important subjects in the whole round of natural history. The metamorphoses of insects, with which every one is familiar, are generally effected abruptly by a few stages; but the transformations are in reality numerous and gradual, though concealed. A certain ephemerous insect (Chlöeon) during its development, moults, as shown by Sir J. Lubbock, above twenty times, and each time undergoes a certain amount of change; and in this case we see the act of metamorphosis performed in a primary and gradual manner. Many insects, and especially certain crustaceans, show us what wonderful changes of structure can be effected during development. Such changes, however, reach their acme in the so-called alternate generations of some of the lower animals. It is, for instance, an astonishing fact that a delicate branching coralline, studded with polypi, and attached to a submarine rock, should produce, first by budding and then by transverse division, a host of huge floating jelly-fishes; and that these should produce eggs, from which are hatched swimming animalcules, which attach themselves to rocks and become developed into branching corallines; and so on in an endless cycle. The belief in the essential identity of the process of alternate generation and of ordinary metamorphosis has been greatly strengthened by Wagner’s discovery of the larva or maggot of a fly, namely the Cecidomyia, producing asexually other larvæ, and these others, which finally are developed into mature males and females, propagating their kind in the ordinary manner by eggs. It may be worth notice that when Wagner’s remarkable discovery was first announced, I was asked how was it possible to account for the larvæ of this fly having acquired the power of a sexual reproduction. As long as the case remained unique no answer could be given. But already Grimm has shown that another fly, a Chironomus, reproduces itself in nearly the same manner, and he believes that this occurs frequently in the order. It is the pupa, and not the larva, of the Chironomus which has this power; and Grimm further shows that this case, to a certain extent, “unites that of the Cecidomyia with the parthenogenesis of the Coccidæ;” the term parthenogenesis implying that the mature females of the Coccidæ are capable of producing fertile eggs without the concourse of the male. Certain animals belonging to several classes are now known to have the power of ordinary reproduction at an unusually early age; and we have only to accelerate parthenogenetic reproduction by gradual steps to an earlier and earlier age—Chironomus showing us an almost exactly intermediate stage, viz., that of the pupa—and we can perhaps account for the marvellous case of the Cecidomyia. It has already been stated that various parts in the same individual, which are exactly alike during an early embryonic period, become widely different and serve for widely different purposes in the adult state. So again it has been shown that generally the embryos of the most distinct species belonging to the same class are closely similar, but become, when fully developed, widely dissimilar. A better proof of this latter fact cannot be given than the statement by Von Baer that “the embryos of mammalia, of birds, lizards and snakes, probably also of chelonia, are in the earliest states exceedingly like one another, both as a whole and in the mode of development of their parts; so much so, in fact, that we can often distinguish the embryos only by their size. In my possession are two little embryos in spirit, whose names I have omitted to attach, and at present I am quite unable to say to what class they belong. They may be lizards or small birds, or very young mammalia, so complete is the similarity in the mode of formation of the head and trunk in these animals. The extremities, however, are still absent in these embryos. But even if they had existed in the earliest stage of their development we should learn nothing, for the feet of lizards and mammals, the wings and feet of birds, no less than the hands and feet of man, all arise from the same fundamental form.” The larvæ of most crustaceans, at corresponding stages of development, closely resemble each other, however different the adults may become; and so it is with very many other animals. A trace of the law of embryonic resemblance occasionally lasts till a rather late age: thus birds of the same genus, and of allied genera, often resemble each other in their immature plumage; as we see in the spotted feathers in the young of the thrush group. In the cat tribe, most of the species when adult are striped or spotted in lines; and stripes or spots can be plainly distinguished in the whelp of the lion and the puma. We occasionally, though rarely, see something of the same kind in plants; thus the first leaves of the ulex or furze, and the first leaves of the phyllodineous acacias, are pinnate or divided like the ordinary leaves of the leguminosæ. The points of structure, in which the embryos of widely different animals within the same class resemble each other, often have no direct relation to their conditions of existence. We cannot, for instance, suppose that in the embryos of the vertebrata the peculiar loop-like courses of the arteries near the branchial slits are related to similar conditions—in the young mammal which is nourished in the womb of its mother, in the egg of the bird which is hatched in a nest, and in the spawn of a frog under water. We have no more reason to believe in such a relation than we have to believe that the similar bones in the hand of a man, wing of a bat, and fin of a porpoise, are related to similar conditions of life. No one supposes that the stripes on the whelp of a lion, or the spots on the young blackbird, are of any use to these animals. The case, however, is different when an animal, during any part of its embryonic career, is active, and has to provide for itself. The period of activity may come on earlier or later in life; but whenever it comes on, the adaptation of the larva to its conditions of life is just as perfect and as beautiful as in the adult animal. In how important a manner this has acted, has recently been well shown by Sir J. Lubbock in his remarks on the close similarity of the larvæ of some insects belonging to very different orders, and on the dissimilarity of the larvæ of other insects within the same order, according to their habits of life. Owing to such adaptations the similarity of the larvæ of allied animals is sometimes greatly obscured; especially when there is a division of labour during the different stages of development, as when the same larva has during one stage to search for food, and during another stage has to search for a place of attachment. Cases can even be given of the larvæ of allied species, or groups of species, differing more from each other than do the adults. In most cases, however, the larvæ, though active, still obey, more or less closely, the law of common embryonic resemblance. Cirripedes afford a good instance of this: even the illustrious Cuvier did not perceive that a barnacle was a crustacean: but a glance at the larva shows this in an unmistakable manner. So again the two main divisions of cirripedes, the pedunculated and sessile, though differing widely in external appearance, have larvæ in all their stages barely distinguishable. The embryo in the course of development generally rises in organisation. I use this expression, though I am aware that it is hardly possible to define clearly what is meant by organisation being higher or lower. But no one probably will dispute that the butterfly is higher than the caterpillar. In some cases, however, the mature animal must be considered as lower in the scale than the larva, as with certain parasitic crustaceans. To refer once again to cirripedes: the larvæ in the first stage have three pairs of locomotive organs, a simple single eye, and a probosciformed mouth, with which they feed largely, for they increase much in size. In the second stage, answering to the chrysalis stage of butterflies, they have six pairs of beautifully constructed natatory legs, a pair of magnificent compound eyes, and extremely complex antennæ; but they have a closed and imperfect mouth, and cannot feed: their function at this stage is, to search out by their well-developed organs of sense, and to reach by their active powers of swimming, a proper place on which to become attached and to undergo their final metamorphosis. When this is completed they are fixed for life: their legs are now converted into prehensile organs; they again obtain a well-constructed mouth; but they have no antennæ, and their two eyes are now reconverted into a minute, single, simple eye-spot. In this last and complete state, cirripedes may be considered as either more highly or more lowly organised than they were in the larval condition. But in some genera the larvæ become developed into hermaphrodites having the ordinary structure, or into what I have called complemental males; and in the latter the development has assuredly been retrograde; for the male is a mere sack, which lives for a short time and is destitute of mouth, stomach, and every other organ of importance, excepting those for reproduction. We are so much accustomed to see a difference in structure between the embryo and the adult, that we are tempted to look at this difference as in some necessary manner contingent on growth. But there is no reason why, for instance, the wing of a bat, or the fin of a porpoise, should not have been sketched out with all their parts in proper proportion, as soon as any part became visible. In some whole groups of animals and in certain members of other groups this is the case, and the embryo does not at any period differ widely from the adult: thus Owen has remarked in regard to cuttle-fish, “there is no metamorphosis; the cephalopodic character is manifested long before the parts of the embryo are completed.” Land-shells and fresh-water crustaceans are born having their proper forms, while the marine members of the same two great classes pass through considerable and often great changes during their development. Spiders, again, barely undergo any metamorphosis. The larvæ of most insects pass through a worm-like stage, whether they are active and adapted to diversified habits, or are inactive from being placed in the midst of proper nutriment, or from being fed by their parents; but in some few cases, as in that of Aphis, if we look to the admirable drawings of the development of this insect, by Professor Huxley, we see hardly any trace of the vermiform stage. Sometimes it is only the earlier developmental stages which fail. Thus, Fritz Müller has made the remarkable discovery that certain shrimp-like crustaceans (allied to Penoeus) first appear under the simple nauplius-form, and after passing through two or more zoëa-stages, and then through the mysis-stage, finally acquire their mature structure: now in the whole great malacostracan order, to which these crustaceans belong, no other member is as yet known to be first developed under the nauplius-form, though many appear as zoëas; nevertheless Müller assigns reasons for his belief, that if there had been no suppression of development, all these crustaceans would have appeared as nauplii. How, then, can we explain these several facts in embryology—namely, the very general, though not universal, difference in structure between the embryo and the adult; the various parts in the same individual embryo, which ultimately become very unlike, and serve for diverse purposes, being at an early period of growth alike; the common, but not invariable, resemblance between the embryos or larvæ of the most distinct species in the same class; the embryo often retaining, while within the egg or womb, structures which are of no service to it, either at that or at a later period of life; on the other hand, larvæ which have to provide for their own wants, being perfectly adapted to the surrounding conditions; and lastly, the fact of certain larvæ standing higher in the scale of organisation than the mature animal into which they are developed? I believe that all these facts can be explained as follows. It is commonly assumed, perhaps from monstrosities affecting the embryo at a very early period, that slight variations or individual differences necessarily appear at an equally early period. We have little evidence on this head, but what we have certainly points the other way; for it is notorious that breeders of cattle, horses and various fancy animals, cannot positively tell, until some time after birth, what will be the merits and demerits of their young animals. We see this plainly in our own children; we cannot tell whether a child will be tall or short, or what its precise features will be. The question is not, at what period of life any variation may have been caused, but at what period the effects are displayed. The cause may have acted, and I believe often has acted, on one or both parents before the act of generation. It deserves notice that it is of no importance to a very young animal, as long as it is nourished and protected by its parent, whether most of its characters are acquired a little earlier or later in life. It would not signify, for instance, to a bird which obtained its food by having a much-curved beak whether or not while young it possessed a beak of this shape, as long as it was fed by its parents. I have stated in the first chapter, that at whatever age any variation first appears in the parent, it tends to reappear at a corresponding age in the offspring. Certain variations can only appear at corresponding ages; for instance, peculiarities in the caterpillar, cocoon, or imago states of the silk-moth; or, again, in the full-grown horns of cattle. But variations which, for all that we can see might have appeared either earlier or later in life, likewise tend to reappear at a corresponding age in the offspring and parent. I am far from meaning that this is invariably the case, and I could give several exceptional cases of variations (taking the word in the largest sense) which have supervened at an earlier age in the child than in the parent. These two principles, namely, that slight variations generally appear at a not very early period of life, and are inherited at a corresponding not early period, explain, as I believe, all the above specified leading facts in embryology. But first let us look to a few analogous cases in our domestic varieties. Some authors who have written on Dogs maintain that the greyhound and bull-dog, though so different, are really closely allied varieties, descended from the same wild stock, hence I was curious to see how far their puppies differed from each other. I was told by breeders that they differed just as much as their parents, and this, judging by the eye, seemed almost to be the case; but on actually measuring the old dogs and their six-days-old puppies, I found that the puppies had not acquired nearly their full amount of proportional difference. So, again, I was told that the foals of cart and race-horses—breeds which have been almost wholly formed by selection under domestication—differed as much as the full-grown animals; but having had careful measurements made of the dams and of three-days-old colts of race and heavy cart-horses, I find that this is by no means the case. As we have conclusive evidence that the breeds of the Pigeon are descended from a single wild species, I compared the young pigeons within twelve hours after being hatched. I carefully measured the proportions (but will not here give the details) of the beak, width of mouth, length of nostril and of eyelid, size of feet and length of leg, in the wild parent species, in pouters, fantails, runts, barbs, dragons, carriers, and tumblers. Now, some of these birds, when mature, differ in so extraordinary a manner in the length and form of beak, and in other characters, that they would certainly have been ranked as distinct genera if found in a state of nature. But when the nestling birds of these several breeds were placed in a row, though most of them could just be distinguished, the proportional differences in the above specified points were incomparably less than in the full-grown birds. Some characteristic points of difference—for instance, that of the width of mouth—could hardly be detected in the young. But there was one remarkable exception to this rule, for the young of the short-faced tumbler differed from the young of the wild rock-pigeon, and of the other breeds, in almost exactly the same proportions as in the adult stage. These facts are explained by the above two principles. Fanciers select their dogs, horses, pigeons, &c., for breeding, when nearly grown up. They are indifferent whether the desired qualities are acquired earlier or later in life, if the full-grown animal possesses them. And the cases just given, more especially that of the pigeons, show that the characteristic differences which have been accumulated by man’s selection, and which give value to his breeds, do not generally appear at a very early period of life, and are inherited at a corresponding not early period. But the case of the short-faced tumbler, which when twelve hours old possessed its proper characters, proves that this is not the universal rule; for here the characteristic differences must either have appeared at an earlier period than usual, or, if not so, the differences must have been inherited, not at a corresponding, but at an earlier age. Now, let us apply these two principles to species in a state of nature. Let us take a group of birds, descended from some ancient form and modified through natural selection for different habits. Then, from the many slight successive variations having supervened in the several species at a not early age, and having been inherited at a corresponding age, the young will have been but little modified, and they will still resemble each other much more closely than do the adults, just as we have seen with the breeds of the pigeon. We may extend this view to widely distinct structures and to whole classes. The fore-limbs, for instance, which once served as legs to a remote progenitor, may have become, through a long course of modification, adapted in one descendant to act as hands, in another as paddles, in another as wings; but on the above two principles the fore-limbs will not have been much modified in the embryos of these several forms; although in each form the fore-limb will differ greatly in the adult state. Whatever influence long continued use or disuse may have had in modifying the limbs or other parts of any species, this will chiefly or solely have affected it when nearly mature, when it was compelled to use its full powers to gain its own living; and the effects thus produced will have been transmitted to the offspring at a corresponding nearly mature age. Thus the young will not be modified, or will be modified only in a slight degree, through the effects of the increased use or disuse of parts. With some animals the successive variations may have supervened at a very early period of life, or the steps may have been inherited at an earlier age than that at which they first occurred. In either of these cases the young or embryo will closely resemble the mature parent-form, as we have seen with the short-faced tumbler. And this is the rule of development in certain whole groups, or in certain sub-groups alone, as with cuttle-fish, land-shells, fresh-water crustaceans, spiders, and some members of the great class of insects. With respect to the final cause of the young in such groups not passing through any metamorphosis, we can see that this would follow from the following contingencies: namely, from the young having to provide at a very early age for their own wants, and from their following the same habits of life with their parents; for in this case it would be indispensable for their existence that they should be modified in the same manner as their parents. Again, with respect to the singular fact that many terrestrial and fresh-water animals do not undergo any metamorphosis, while marine members of the same groups pass through various transformations, Fritz Müller has suggested that the process of slowly modifying and adapting an animal to live on the land or in fresh water, instead of in the sea, would be greatly simplified by its not passing through any larval stage; for it is not probable that places well adapted for both the larval and mature stages, under such new and greatly changed habits of life, would commonly be found unoccupied or ill-occupied by other organisms. In this case the gradual acquirement at an earlier and earlier age of the adult structure would be favoured by natural selection; and all traces of former metamorphoses would finally be lost. If, on the other hand, it profited the young of an animal to follow habits of life slightly different from those of the parent-form, and consequently to be constructed on a slightly different plan, or if it profited a larva already different from its parent to change still further, then, on the principle of inheritance at corresponding ages, the young or the larvæ might be rendered by natural selection more and more different from their parents to any conceivable extent. Differences in the larva might, also, become correlated with successive stages of its development; so that the larva, in the first stage, might come to differ greatly from the larva in the second stage, as is the case with many animals. The adult might also become fitted for sites or habits, in which organs of locomotion or of the senses, &c., would be useless; and in this case the metamorphosis would be retrograde. From the remarks just made we can see how by changes of structure in the young, in conformity with changed habits of life, together with inheritance at corresponding ages, animals might come to pass through stages of development, perfectly distinct from the primordial condition of their adult progenitors. Most of our best authorities are now convinced that the various larval and pupal stages of insects have thus been acquired through adaptation, and not through inheritance from some ancient form. The curious case of Sitaris—a beetle which passes through certain unusual stages of development—will illustrate how this might occur. The first larval form is described by M. Fabre, as an active, minute insect, furnished with six legs, two long antennæ, and four eyes. These larvæ are hatched in the nests of bees; and when the male bees emerge from their burrows, in the spring, which they do before the females, the larvæ spring on them, and afterwards crawl on to the females while paired with the males. As soon as the female bee deposits her eggs on the surface of the honey stored in the cells, the larvæ of the Sitaris leap on the eggs and devour them. Afterwards they undergo a complete change; their eyes disappear; their legs and antennæ become rudimentary, and they feed on honey; so that they now more closely resemble the ordinary larvæ of insects; ultimately they undergo a further transformation, and finally emerge as the perfect beetle. Now, if an insect, undergoing transformations like those of the Sitaris, were to become the progenitor of a whole new class of insects, the course of development of the new class would be widely different from that of our existing insects; and the first larval stage certainly would not represent the former condition of any adult and ancient form. On the other hand it is highly probable that with many animals the embryonic or larval stages show us, more or less completely, the condition of the progenitor of the whole group in its adult state. In the great class of the Crustacea, forms wonderfully distinct from each other, namely, suctorial parasites, cirripedes, entomostraca, and even the malacostraca, appear at first as larvæ under the nauplius-form; and as these larvæ live and feed in the open sea, and are not adapted for any peculiar habits of life, and from other reasons assigned by Fritz Müller, it is probable that at some very remote period an independent adult animal, resembling the Nauplius, existed, and subsequently produced, along several divergent lines of descent, the above-named great Crustacean groups. So again, it is probable, from what we know of the embryos of mammals, birds, fishes and reptiles, that these animals are the modified descendants of some ancient progenitor, which was furnished in its adult state with branchiæ, a swim-bladder, four fin-like limbs, and a long tail, all fitted for an aquatic life. As all the organic beings, extinct and recent, which have ever lived, can be arranged within a few great classes; and as all within each class have, according to our theory, been connected together by fine gradations, the best, and, if our collections were nearly perfect, the only possible arrangement, would be genealogical; descent being the hidden bond of connexion which naturalists have been seeking under the term of the Natural System. On this view we can understand how it is that, in the eyes of most naturalists, the structure of the embryo is even more important for classification than that of the adult. In two or more groups of animals, however much they may differ from each other in structure and habits in their adult condition, if they pass through closely similar embryonic stages, we may feel assured that they are all descended from one parent-form, and are therefore closely related. Thus, community in embryonic structure reveals community of descent; but dissimilarity in embryonic development does not prove discommunity of descent, for in one of two groups the developmental stages may have been suppressed, or may have been so greatly modified through adaptation to new habits of life as to be no longer recognisable. Even in groups, in which the adults have been modified to an extreme degree, community of origin is often revealed by the structure of the larvæ; we have seen, for instance, that cirripedes, though externally so like shell-fish, are at once known by their larvæ to belong to the great class of crustaceans. As the embryo often shows us more or less plainly the structure of the less modified and ancient progenitor of the group, we can see why ancient and extinct forms so often resemble in their adult state the embryos of existing species of the same class. Agassiz believes this to be a universal law of nature; and we may hope hereafter to see the law proved true. It can, however, be proved true only in those cases in which the ancient state of the progenitor of the group has not been wholly obliterated, either by successive variations having supervened at a very early period of growth, or by such variations having been inherited at an earlier age than that at which they first appeared. It should also be borne in mind, that the law may be true, but yet, owing to the geological record not extending far enough back in time, may remain for a long period, or for ever, incapable of demonstration. The law will not strictly hold good in those cases in which an ancient form became adapted in its larval state to some special line of life, and transmitted the same larval state to a whole group of descendants; for such larval state will not resemble any still more ancient form in its adult state. Thus, as it seems to me, the leading facts in embryology, which are second to none in importance, are explained on the principle of variations in the many descendants from some one ancient progenitor, having appeared at a not very early period of life, and having been inherited at a corresponding period. Embryology rises greatly in interest, when we look at the embryo as a picture, more or less obscured, of the progenitor, either in its adult or larval state, of all the members of the same great class. Rudimentary, Atrophied, and Aborted Organs. Organs or parts in this strange condition, bearing the plain stamp of inutility, are extremely common, or even general, throughout nature. It would be impossible to name one of the higher animals in which some part or other is not in a rudimentary condition. In the mammalia, for instance, the males possess rudimentary mammæ; in snakes one lobe of the lungs is rudimentary; in birds the “bastard-wing” may safely be considered as a rudimentary digit, and in some species the whole wing is so far rudimentary that it cannot be used for flight. What can be more curious than the presence of teeth in foetal whales, which when grown up have not a tooth in their heads; or the teeth, which never cut through the gums, in the upper jaws of unborn calves? Rudimentary organs plainly declare their origin and meaning in various ways. There are beetles belonging to closely allied species, or even to the same identical species, which have either full-sized and perfect wings, or mere rudiments of membrane, which not rarely lie under wing-covers firmly soldered together; and in these cases it is impossible to doubt, that the rudiments represent wings. Rudimentary organs sometimes retain their potentiality: this occasionally occurs with the mammæ of male mammals, which have been known to become well developed and to secrete milk. So again in the udders of the genus Bos, there are normally four developed and two rudimentary teats; but the latter in our domestic cows sometimes become well developed and yield milk. In regard to plants, the petals are sometimes rudimentary, and sometimes well developed in the individuals of the same species. In certain plants having separated sexes Kölreuter found that by crossing a species, in which the male flowers included a rudiment of a pistil, with an hermaphrodite species, having of course a well-developed pistil, the rudiment in the hybrid offspring was much increased in size; and this clearly shows that the rudimentary and perfect pistils are essentially alike in nature. An animal may possess various parts in a perfect state, and yet they may in one sense be rudimentary, for they are useless: thus the tadpole of the common salamander or water-newt, as Mr. G.H. Lewes remarks, “has gills, and passes its existence in the water; but the Salamandra atra, which lives high up among the mountains, brings forth its young full-formed. This animal never lives in the water. Yet if we open a gravid female, we find tadpoles inside her with exquisitely feathered gills; and when placed in water they swim about like the tadpoles of the water-newt. Obviously this aquatic organisation has no reference to the future life of the animal, nor has it any adaptation to its embryonic condition; it has solely reference to ancestral adaptations, it repeats a phase in the development of its progenitors.” An organ, serving for two purposes, may become rudimentary or utterly aborted for one, even the more important purpose, and remain perfectly efficient for the other. Thus, in plants, the office of the pistil is to allow the pollen-tubes to reach the ovules within the ovarium. The pistil consists of a stigma supported on the style; but in some Compositæ, the male florets, which of course cannot be fecundated, have a rudimentary pistil, for it is not crowned with a stigma; but the style remains well developed and is clothed in the usual manner with hairs, which serve to brush the pollen out of the surrounding and conjoined anthers. Again, an organ may become rudimentary for its proper purpose, and be used for a distinct one: in certain fishes the swim-bladder seems to be rudimentary for its proper function of giving buoyancy, but has become converted into a nascent breathing organ or lung. Many similar instances could be given. Useful organs, however little they may be developed, unless we have reason to suppose that they were formerly more highly developed, ought not to be considered as rudimentary. They may be in a nascent condition, and in progress towards further development. Rudimentary organs, on the other hand, are either quite useless, such as teeth which never cut through the gums, or almost useless, such as the wings of an ostrich, which serve merely as sails. As organs in this condition would formerly, when still less developed, have been of even less use than at present, they cannot formerly have been produced through variation and natural selection, which acts solely by the preservation of useful modifications. They have been partially retained by the power of inheritance, and relate to a former state of things. It is, however, often difficult to distinguish between rudimentary and nascent organs; for we can judge only by analogy whether a part is capable of further development, in which case alone it deserves to be called nascent. Organs in this condition will always be somewhat rare; for beings thus provided will commonly have been supplanted by their successors with the same organ in a more perfect state, and consequently will have become long ago extinct. The wing of the penguin is of high service, acting as a fin; it may, therefore, represent the nascent state of the wing: not that I believe this to be the case; it is more probably a reduced organ, modified for a new function: the wing of the Apteryx, on the other hand, is quite useless, and is truly rudimentary. Owen considers the simple filamentary limbs of the Lepidosiren as the “beginnings of organs which attain full functional development in higher vertebrates;” but, according to the view lately advocated by Dr. Günther, they are probably remnants, consisting of the persistent axis of a fin, with the lateral rays or branches aborted. The mammary glands of the Ornithorhynchus may be considered, in comparison with the udders of a cow, as in a nascent condition. The ovigerous frena of certain cirripedes, which have ceased to give attachment to the ova and are feebly developed, are nascent branchiæ. Rudimentary organs in the individuals of the same species are very liable to vary in the degree of their development and in other respects. In closely allied species, also, the extent to which the same organ has been reduced occasionally differs much. This latter fact is well exemplified in the state of the wings of female moths belonging to the same family. Rudimentary organs may be utterly aborted; and this implies, that in certain animals or plants, parts are entirely absent which analogy would lead us to expect to find in them, and which are occasionally found in monstrous individuals. Thus in most of the Scrophulariaceæ the fifth stamen is utterly aborted; yet we may conclude that a fifth stamen once existed, for a rudiment of it is found in many species of the family, and this rudiment occasionally becomes perfectly developed, as may sometimes be seen in the common snap-dragon. In tracing the homologies of any part in different members of the same class, nothing is more common, or, in order fully to understand the relations of the parts, more useful than the discovery of rudiments. This is well shown in the drawings given by Owen of the leg bones of the horse, ox, and rhinoceros. It is an important fact that rudimentary organs, such as teeth in the upper jaws of whales and ruminants, can often be detected in the embryo, but afterwards wholly disappear. It is also, I believe, a universal rule, that a rudimentary part is of greater size in the embryo relatively to the adjoining parts, than in the adult; so that the organ at this early age is less rudimentary, or even cannot be said to be in any degree rudimentary. Hence rudimentary organs in the adult are often said to have retained their embryonic condition. I have now given the leading facts with respect to rudimentary organs. In reflecting on them, every one must be struck with astonishment; for the same reasoning power which tells us that most parts and organs are exquisitely adapted for certain purposes, tells us with equal plainness that these rudimentary or atrophied organs are imperfect and useless. In works on natural history, rudimentary organs are generally said to have been created “for the sake of symmetry,” or in order “to complete the scheme of nature.” But this is not an explanation, merely a restatement of the fact. Nor is it consistent with itself: thus the boa-constrictor has rudiments of hind limbs and of a pelvis, and if it be said that these bones have been retained “to complete the scheme of nature,” why, as Professor Weismann asks, have they not been retained by other snakes, which do not possess even a vestige of these same bones? What would be thought of an astronomer who maintained that the satellites revolve in elliptic courses round their planets “for the sake of symmetry,” because the planets thus revolve round the sun? An eminent physiologist accounts for the presence of rudimentary organs, by supposing that they serve to excrete matter in excess, or matter injurious to the system; but can we suppose that the minute papilla, which often represents the pistil in male flowers, and which is formed of mere cellular tissue, can thus act? Can we suppose that rudimentary teeth, which are subsequently absorbed, are beneficial to the rapidly growing embryonic calf by removing matter so precious as phosphate of lime? When a man’s fingers have been amputated, imperfect nails have been known to appear on the stumps, and I could as soon believe that these vestiges of nails are developed in order to excrete horny matter, as that the rudimentary nails on the fin of the manatee have been developed for this same purpose. On the view of descent with modification, the origin of rudimentary organs is comparatively simple; and we can understand to a large extent the laws governing their imperfect development. We have plenty of cases of rudimentary organs in our domestic productions, as the stump of a tail in tailless breeds, the vestige of an ear in earless breeds of sheep—the reappearance of minute dangling horns in hornless breeds of cattle, more especially, according to Youatt, in young animals—and the state of the whole flower in the cauliflower. We often see rudiments of various parts in monsters; but I doubt whether any of these cases throw light on the origin of rudimentary organs in a state of nature, further than by showing that rudiments can be produced; for the balance of evidence clearly indicates that species under nature do not undergo great and abrupt changes. But we learn from the study of our domestic productions that the disuse of parts leads to their reduced size; and that the result is inherited. It appears probable that disuse has been the main agent in rendering organs rudimentary. It would at first lead by slow steps to the more and more complete reduction of a part, until at last it became rudimentary—as in the case of the eyes of animals inhabiting dark caverns, and of the wings of birds inhabiting oceanic islands, which have seldom been forced by beasts of prey to take flight, and have ultimately lost the power of flying. Again, an organ, useful under certain conditions, might become injurious under others, as with the wings of beetles living on small and exposed islands; and in this case natural selection will have aided in reducing the organ, until it was rendered harmless and rudimentary. Any change in structure and function, which can be effected by small stages, is within the power of natural selection; so that an organ rendered, through changed habits of life, useless or injurious for one purpose, might be modified and used for another purpose. An organ might, also, be retained for one alone of its former functions. Organs, originally formed by the aid of natural selection, when rendered useless may well be variable, for their variations can no longer be checked by natural selection. All this agrees well with what we see under nature. Moreover, at whatever period of life either disuse or selection reduces an organ, and this will generally be when the being has come to maturity and to exert its full powers of action, the principle of inheritance at corresponding ages will tend to reproduce the organ in its reduced state at the same mature age, but will seldom affect it in the embryo. Thus we can understand the greater size of rudimentary organs in the embryo relatively to the adjoining parts, and their lesser relative size in the adult. If, for instance, the digit of an adult animal was used less and less during many generations, owing to some change of habits, or if an organ or gland was less and less functionally exercised, we may infer that it would become reduced in size in the adult descendants of this animal, but would retain nearly its original standard of development in the embryo. There remains, however, this difficulty. After an organ has ceased being used, and has become in consequence much reduced, how can it be still further reduced in size until the merest vestige is left; and how can it be finally quite obliterated? It is scarcely possible that disuse can go on producing any further effect after the organ has once been rendered functionless. Some additional explanation is here requisite which I cannot give. If, for instance, it could be proved that every part of the organisation tends to vary in a greater degree towards diminution than toward augmentation of size, then we should be able to understand how an organ which has become useless would be rendered, independently of the effects of disuse, rudimentary and would at last be wholly suppressed; for the variations towards diminished size would no longer be checked by natural selection. The principle of the economy of growth, explained in a former chapter, by which the materials forming any part, if not useful to the possessor, are saved as far as is possible, will perhaps come into play in rendering a useless part rudimentary. But this principle will almost necessarily be confined to the earlier stages of the process of reduction; for we cannot suppose that a minute papilla, for instance, representing in a male flower the pistil of the female flower, and formed merely of cellular tissue, could be further reduced or absorbed for the sake of economising nutriment. Finally, as rudimentary organs, by whatever steps they may have been degraded into their present useless condition, are the record of a former state of things, and have been retained solely through the power of inheritance—we can understand, on the genealogical view of classification, how it is that systematists, in placing organisms in their proper places in the natural system, have often found rudimentary parts as useful as, or even sometimes more useful than, parts of high physiological importance. Rudimentary organs may be compared with the letters in a word, still retained in the spelling, but become useless in the pronunciation, but which serve as a clue for its derivation. On the view of descent with modification, we may conclude that the existence of organs in a rudimentary, imperfect, and useless condition, or quite aborted, far from presenting a strange difficulty, as they assuredly do on the old doctrine of creation, might even have been anticipated in accordance with the views here explained. Summary. In this chapter I have attempted to show that the arrangement of all organic beings throughout all time in groups under groups—that the nature of the relationships by which all living and extinct organisms are united by complex, radiating, and circuitous lines of affinities into a few grand classes—the rules followed and the difficulties encountered by naturalists in their classifications—the value set upon characters, if constant and prevalent, whether of high or of the most trifling importance, or, as with rudimentary organs of no importance—the wide opposition in value between analogical or adaptive characters, and characters of true affinity; and other such rules—all naturally follow if we admit the common parentage of allied forms, together with their modification through variation and natural selection, with the contingencies of extinction and divergence of character. In considering this view of classification, it should be borne in mind that the element of descent has been universally used in ranking together the sexes, ages, dimorphic forms, and acknowledged varieties of the same species, however much they may differ from each other in structure. If we extend the use of this element of descent—the one certainly known cause of similarity in organic beings—we shall understand what is meant by the Natural System: it is genealogical in its attempted arrangement, with the grades of acquired difference marked by the terms, varieties, species, genera, families, orders, and classes. On this same view of descent with modification, most of the great facts in Morphology become intelligible—whether we look to the same pattern displayed by the different species of the same class in their homologous organs, to whatever purpose applied, or to the serial and lateral homologies in each individual animal and plant. On the principle of successive slight variations, not necessarily or generally supervening at a very early period of life, and being inherited at a corresponding period, we can understand the leading facts in embryology; namely, the close resemblance in the individual embryo of the parts which are homologous, and which when matured become widely different in structure and function; and the resemblance of the homologous parts or organs in allied though distinct species, though fitted in the adult state for habits as different as is possible. Larvæ are active embryos, which have become specially modified in a greater or less degree in relation to their habits of life, with their modifications inherited at a corresponding early age. On these same principles, and bearing in mind that when organs are reduced in size, either from disuse or through natural selection, it will generally be at that period of life when the being has to provide for its own wants, and bearing in mind how strong is the force of inheritance—the occurrence of rudimentary organs might even have been anticipated. The importance of embryological characters and of rudimentary organs in classification is intelligible, on the view that a natural arrangement must be genealogical. Finally, the several classes of facts which have been considered in this chapter, seem to me to proclaim so plainly, that the innumerable species, genera and families, with which this world is peopled, are all descended, each within its own class or group, from common parents, and have all been modified in the course of descent, that I should without hesitation adopt this view, even if it were unsupported by other facts or arguments. CHAPTER XV RECAPITULATION AND CONCLUSION Recapitulation of the objections to the theory of Natural Selection—Recapitulation of the general and special circumstances in its favour—Causes of the general belief in the immutability of species—How far the theory of Natural Selection may be extended—Effects of its adoption on the study of Natural History—Concluding remarks. As this whole volume is one long argument, it may be convenient to the reader to have the leading facts and inferences briefly recapitulated. That many and serious objections may be advanced against the theory of descent with modification through variation and natural selection, I do not deny. I have endeavoured to give to them their full force. Nothing at first can appear more difficult to believe than that the more complex organs and instincts have been perfected, not by means superior to, though analogous with, human reason, but by the accumulation of innumerable slight variations, each good for the individual possessor. Nevertheless, this difficulty, though appearing to our imagination insuperably great, cannot be considered real if we admit the following propositions, namely, that all parts of the organisation and instincts offer, at least individual differences—that there is a struggle for existence leading to the preservation of profitable deviations of structure or instinct—and, lastly, that gradations in the state of perfection of each organ may have existed, each good of its kind. The truth of these propositions cannot, I think, be disputed. It is, no doubt, extremely difficult even to conjecture by what gradations many structures have been perfected, more especially among broken and failing groups of organic beings, which have suffered much extinction; but we see so many strange gradations in nature, that we ought to be extremely cautious in saying that any organ or instinct, or any whole structure, could not have arrived at its present state by many graduated steps. There are, it must be admitted, cases of special difficulty opposed to the theory of natural selection; and one of the most curious of these is the existence in the same community of two or three defined castes of workers or sterile female ants; but I have attempted to show how these difficulties can be mastered. With respect to the almost universal sterility of species when first crossed, which forms so remarkable a contrast with the almost universal fertility of varieties when crossed, I must refer the reader to the recapitulation of the facts given at the end of the ninth chapter, which seem to me conclusively to show that this sterility is no more a special endowment than is the incapacity of two distinct kinds of trees to be grafted together; but that it is incidental on differences confined to the reproductive systems of the intercrossed species. We see the truth of this conclusion in the vast difference in the results of crossing the same two species reciprocally—that is, when one species is first used as the father and then as the mother. Analogy from the consideration of dimorphic and trimorphic plants clearly leads to the same conclusion, for when the forms are illegitimately united, they yield few or no seed, and their offspring are more or less sterile; and these forms belong to the same undoubted species, and differ from each other in no respect except in their reproductive organs and functions. Although the fertility of varieties when intercrossed, and of their mongrel offspring, has been asserted by so many authors to be universal, this cannot be considered as quite correct after the facts given on the high authority of Gärtner and Kölreuter. Most of the varieties which have been experimented on have been produced under domestication; and as domestication (I do not mean mere confinement) almost certainly tends to eliminate that sterility which, judging from analogy, would have affected the parent-species if intercrossed, we ought not to expect that domestication would likewise induce sterility in their modified descendants when crossed. This elimination of sterility apparently follows from the same cause which allows our domestic animals to breed freely under diversified circumstances; and this again apparently follows from their having been gradually accustomed to frequent changes in their conditions of life. A double and parallel series of facts seems to throw much light on the sterility of species, when first crossed, and of their hybrid offspring. On the one side, there is good reason to believe that slight changes in the conditions of life give vigour and fertility to all organic beings. We know also that a cross between the distinct individuals of the same variety, and between distinct varieties, increases the number of their offspring, and certainly gives to them increased size and vigour. This is chiefly owing to the forms which are crossed having been exposed to somewhat different conditions of life; for I have ascertained by a labourious series of experiments that if all the individuals of the same variety be subjected during several generations to the same conditions, the good derived from crossing is often much diminished or wholly disappears. This is one side of the case. On the other side, we know that species which have long been exposed to nearly uniform conditions, when they are subjected under confinement to new and greatly changed conditions, either perish, or if they survive, are rendered sterile, though retaining perfect health. This does not occur, or only in a very slight degree, with our domesticated productions, which have long been exposed to fluctuating conditions. Hence when we find that hybrids produced by a cross between two distinct species are few in number, owing to their perishing soon after conception or at a very early age, or if surviving that they are rendered more or less sterile, it seems highly probable that this result is due to their having been in fact subjected to a great change in their conditions of life, from being compounded of two distinct organisations. He who will explain in a definite manner why, for instance, an elephant or a fox will not breed under confinement in its native country, whilst the domestic pig or dog will breed freely under the most diversified conditions, will at the same time be able to give a definite answer to the question why two distinct species, when crossed, as well as their hybrid offspring, are generally rendered more or less sterile, while two domesticated varieties when crossed and their mongrel offspring are perfectly fertile. Turning to geographical distribution, the difficulties encountered on the theory of descent with modification are serious enough. All the individuals of the same species, and all the species of the same genus, or even higher group, are descended from common parents; and therefore, in however distant and isolated parts of the world they may now be found, they must in the course of successive generations have travelled from some one point to all the others. We are often wholly unable even to conjecture how this could have been effected. Yet, as we have reason to believe that some species have retained the same specific form for very long periods of time, immensely long as measured by years, too much stress ought not to be laid on the occasional wide diffusion of the same species; for during very long periods there will always have been a good chance for wide migration by many means. A broken or interrupted range may often be accounted for by the extinction of the species in the intermediate regions. It cannot be denied that we are as yet very ignorant as to the full extent of the various climatical and geographical changes which have affected the earth during modern periods; and such changes will often have facilitated migration. As an example, I have attempted to show how potent has been the influence of the Glacial period on the distribution of the same and of allied species throughout the world. We are as yet profoundly ignorant of the many occasional means of transport. With respect to distinct species of the same genus, inhabiting distant and isolated regions, as the process of modification has necessarily been slow, all the means of migration will have been possible during a very long period; and consequently the difficulty of the wide diffusion of the species of the same genus is in some degree lessened. As according to the theory of natural selection an interminable number of intermediate forms must have existed, linking together all the species in each group by gradations as fine as our existing varieties, it may be asked, Why do we not see these linking forms all around us? Why are not all organic beings blended together in an inextricable chaos? With respect to existing forms, we should remember that we have no right to expect (excepting in rare cases) to discover directly connecting links between them, but only between each and some extinct and supplanted form. Even on a wide area, which has during a long period remained continuous, and of which the climatic and other conditions of life change insensibly in proceeding from a district occupied by one species into another district occupied by a closely allied species, we have no just right to expect often to find intermediate varieties in the intermediate zones. For we have reason to believe that only a few species of a genus ever undergo change; the other species becoming utterly extinct and leaving no modified progeny. Of the species which do change, only a few within the same country change at the same time; and all modifications are slowly effected. I have also shown that the intermediate varieties which probably at first existed in the intermediate zones, would be liable to be supplanted by the allied forms on either hand; for the latter, from existing in greater numbers, would generally be modified and improved at a quicker rate than the intermediate varieties, which existed in lesser numbers; so that the intermediate varieties would, in the long run, be supplanted and exterminated. On this doctrine of the extermination of an infinitude of connecting links, between the living and extinct inhabitants of the world, and at each successive period between the extinct and still older species, why is not every geological formation charged with such links? Why does not every collection of fossil remains afford plain evidence of the gradation and mutation of the forms of life? Although geological research has undoubtedly revealed the former existence of many links, bringing numerous forms of life much closer together, it does not yield the infinitely many fine gradations between past and present species required on the theory, and this is the most obvious of the many objections which may be urged against it. Why, again, do whole groups of allied species appear, though this appearance is often false, to have come in suddenly on the successive geological stages? Although we now know that organic beings appeared on this globe, at a period incalculably remote, long before the lowest bed of the Cambrian system was deposited, why do we not find beneath this system great piles of strata stored with the remains of the progenitors of the Cambrian fossils? For on the theory, such strata must somewhere have been deposited at these ancient and utterly unknown epochs of the world’s history. I can answer these questions and objections only on the supposition that the geological record is far more imperfect than most geologists believe. The number of specimens in all our museums is absolutely as nothing compared with the countless generations of countless species which have certainly existed. The parent form of any two or more species would not be in all its characters directly intermediate between its modified offspring, any more than the rock-pigeon is directly intermediate in crop and tail between its descendants, the pouter and fantail pigeons. We should not be able to recognise a species as the parent of another and modified species, if we were to examine the two ever so closely, unless we possessed most of the intermediate links; and owing to the imperfection of the geological record, we have no just right to expect to find so many links. If two or three, or even more linking forms were discovered, they would simply be ranked by many naturalists as so many new species, more especially if found in different geological substages, let their differences be ever so slight. Numerous existing doubtful forms could be named which are probably varieties; but who will pretend that in future ages so many fossil links will be discovered, that naturalists will be able to decide whether or not these doubtful forms ought to be called varieties? Only a small portion of the world has been geologically explored. Only organic beings of certain classes can be preserved in a fossil condition, at least in any great number. Many species when once formed never undergo any further change but become extinct without leaving modified descendants; and the periods during which species have undergone modification, though long as measured by years, have probably been short in comparison with the periods during which they retained the same form. It is the dominant and widely ranging species which vary most frequently and vary most, and varieties are often at first local—both causes rendering the discovery of intermediate links in any one formation less likely. Local varieties will not spread into other and distant regions until they are considerably modified and improved; and when they have spread, and are discovered in a geological formation, they appear as if suddenly created there, and will be simply classed as new species. Most formations have been intermittent in their accumulation; and their duration has probably been shorter than the average duration of specific forms. Successive formations are in most cases separated from each other by blank intervals of time of great length, for fossiliferous formations thick enough to resist future degradation can, as a general rule, be accumulated only where much sediment is deposited on the subsiding bed of the sea. During the alternate periods of elevation and of stationary level the record will generally be blank. During these latter periods there will probably be more variability in the forms of life; during periods of subsidence, more extinction. With respect to the absence of strata rich in fossils beneath the Cambrian formation, I can recur only to the hypothesis given in the tenth chapter; namely, that though our continents and oceans have endured for an enormous period in nearly their present relative positions, we have no reason to assume that this has always been the case; consequently formations much older than any now known may lie buried beneath the great oceans. With respect to the lapse of time not having been sufficient since our planet was consolidated for the assumed amount of organic change, and this objection, as urged by Sir William Thompson, is probably one of the gravest as yet advanced, I can only say, firstly, that we do not know at what rate species change, as measured by years, and secondly, that many philosophers are not as yet willing to admit that we know enough of the constitution of the universe and of the interior of our globe to speculate with safety on its past duration. That the geological record is imperfect all will admit; but that it is imperfect to the degree required by our theory, few will be inclined to admit. If we look to long enough intervals of time, geology plainly declares that species have all changed; and they have changed in the manner required by the theory, for they have changed slowly and in a graduated manner. We clearly see this in the fossil remains from consecutive formations invariably being much more closely related to each other than are the fossils from widely separated formations. Such is the sum of the several chief objections and difficulties which may justly be urged against the theory; and I have now briefly recapitulated the answers and explanations which, as far as I can see, may be given. I have felt these difficulties far too heavily during many years to doubt their weight. But it deserves especial notice that the more important objections relate to questions on which we are confessedly ignorant; nor do we know how ignorant we are. We do not know all the possible transitional gradations between the simplest and the most perfect organs; it cannot be pretended that we know all the varied means of Distribution during the long lapse of years, or that we know how imperfect is the Geological Record. Serious as these several objections are, in my judgment they are by no means sufficient to overthrow the theory of descent with subsequent modification. Now let us turn to the other side of the argument. Under domestication we see much variability, caused, or at least excited, by changed conditions of life; but often in so obscure a manner, that we are tempted to consider the variations as spontaneous. Variability is governed by many complex laws, by correlated growth, compensation, the increased use and disuse of parts, and the definite action of the surrounding conditions. There is much difficulty in ascertaining how largely our domestic productions have been modified; but we may safely infer that the amount has been large, and that modifications can be inherited for long periods. As long as the conditions of life remain the same, we have reason to believe that a modification, which has already been inherited for many generations, may continue to be inherited for an almost infinite number of generations. On the other hand we have evidence that variability, when it has once come into play, does not cease under domestication for a very long period; nor do we know that it ever ceases, for new varieties are still occasionally produced by our oldest domesticated productions. Variability is not actually caused by man; he only unintentionally exposes organic beings to new conditions of life and then nature acts on the organisation and causes it to vary. But man can and does select the variations given to him by nature, and thus accumulates them in any desired manner. He thus adapts animals and plants for his own benefit or pleasure. He may do this methodically, or he may do it unconsciously by preserving the individuals most useful or pleasing to him without any intention of altering the breed. It is certain that he can largely influence the character of a breed by selecting, in each successive generation, individual differences so slight as to be inappreciable except by an educated eye. This unconscious process of selection has been the great agency in the formation of the most distinct and useful domestic breeds. That many breeds produced by man have to a large extent the character of natural species, is shown by the inextricable doubts whether many of them are varieties or aboriginally distinct species. There is no reason why the principles which have acted so efficiently under domestication should not have acted under nature. In the survival of favoured individuals and races, during the constantly recurrent Struggle for Existence, we see a powerful and ever-acting form of Selection. The struggle for existence inevitably follows from the high geometrical ratio of increase which is common to all organic beings. This high rate of increase is proved by calculation—by the rapid increase of many animals and plants during a succession of peculiar seasons, and when naturalised in new countries. More individuals are born than can possibly survive. A grain in the balance may determine which individuals shall live and which shall die—which variety or species shall increase in number, and which shall decrease, or finally become extinct. As the individuals of the same species come in all respects into the closest competition with each other, the struggle will generally be most severe between them; it will be almost equally severe between the varieties of the same species, and next in severity between the species of the same genus. On the other hand the struggle will often be severe between beings remote in the scale of nature. The slightest advantage in certain individuals, at any age or during any season, over those with which they come into competition, or better adaptation in however slight a degree to the surrounding physical conditions, will, in the long run, turn the balance. With animals having separated sexes, there will be in most cases a struggle between the males for the possession of the females. The most vigorous males, or those which have most successfully struggled with their conditions of life, will generally leave most progeny. But success will often depend on the males having special weapons or means of defence or charms; and a slight advantage will lead to victory. As geology plainly proclaims that each land has undergone great physical changes, we might have expected to find that organic beings have varied under nature, in the same way as they have varied under domestication. And if there has been any variability under nature, it would be an unaccountable fact if natural selection had not come into play. It has often been asserted, but the assertion is incapable of proof, that the amount of variation under nature is a strictly limited quantity. Man, though acting on external characters alone and often capriciously, can produce within a short period a great result by adding up mere individual differences in his domestic productions; and every one admits that species present individual differences. But, besides such differences, all naturalists admit that natural varieties exist, which are considered sufficiently distinct to be worthy of record in systematic works. No one has drawn any clear distinction between individual differences and slight varieties; or between more plainly marked varieties and subspecies and species. On separate continents, and on different parts of the same continent, when divided by barriers of any kind, and on outlying islands, what a multitude of forms exist, which some experienced naturalists rank as varieties, others as geographical races or sub species, and others as distinct, though closely allied species! If, then, animals and plants do vary, let it be ever so slightly or slowly, why should not variations or individual differences, which are in any way beneficial, be preserved and accumulated through natural selection, or the survival of the fittest? If man can by patience select variations useful to him, why, under changing and complex conditions of life, should not variations useful to nature’s living products often arise, and be preserved or selected? What limit can be put to this power, acting during long ages and rigidly scrutinising the whole constitution, structure, and habits of each creature, favouring the good and rejecting the bad? I can see no limit to this power, in slowly and beautifully adapting each form to the most complex relations of life. The theory of natural selection, even if we look no further than this, seems to be in the highest degree probable. I have already recapitulated, as fairly as I could, the opposed difficulties and objections: now let us turn to the special facts and arguments in favour of the theory. On the view that species are only strongly marked and permanent varieties, and that each species first existed as a variety, we can see why it is that no line of demarcation can be drawn between species, commonly supposed to have been produced by special acts of creation, and varieties which are acknowledged to have been produced by secondary laws. On this same view we can understand how it is that in a region where many species of a genus have been produced, and where they now flourish, these same species should present many varieties; for where the manufactory of species has been active, we might expect, as a general rule, to find it still in action; and this is the case if varieties be incipient species. Moreover, the species of the larger genera, which afford the greater number of varieties or incipient species, retain to a certain degree the character of varieties; for they differ from each other by a less amount of difference than do the species of smaller genera. The closely allied species also of a larger genera apparently have restricted ranges, and in their affinities they are clustered in little groups round other species—in both respects resembling varieties. These are strange relations on the view that each species was independently created, but are intelligible if each existed first as a variety. As each species tends by its geometrical rate of reproduction to increase inordinately in number; and as the modified descendants of each species will be enabled to increase by as much as they become more diversified in habits and structure, so as to be able to seize on many and widely different places in the economy of nature, there will be a constant tendency in natural selection to preserve the most divergent offspring of any one species. Hence during a long-continued course of modification, the slight differences characteristic of varieties of the same species, tend to be augmented into the greater differences characteristic of the species of the same genus. New and improved varieties will inevitably supplant and exterminate the older, less improved and intermediate varieties; and thus species are rendered to a large extent defined and distinct objects. Dominant species belonging to the larger groups within each class tend to give birth to new and dominant forms; so that each large group tends to become still larger, and at the same time more divergent in character. But as all groups cannot thus go on increasing in size, for the world would not hold them, the more dominant groups beat the less dominant. This tendency in the large groups to go on increasing in size and diverging in character, together with the inevitable contingency of much extinction, explains the arrangement of all the forms of life in groups subordinate to groups, all within a few great classes, which has prevailed throughout all time. This grand fact of the grouping of all organic beings under what is called the Natural System, is utterly inexplicable on the theory of creation. As natural selection acts solely by accumulating slight, successive, favourable variations, it can produce no great or sudden modifications; it can act only by short and slow steps. Hence, the canon of “Natura non facit saltum,” which every fresh addition to our knowledge tends to confirm, is on this theory intelligible. We can see why throughout nature the same general end is gained by an almost infinite diversity of means, for every peculiarity when once acquired is long inherited, and structures already modified in many different ways have to be adapted for the same general purpose. We can, in short, see why nature is prodigal in variety, though niggard in innovation. But why this should be a law of nature if each species has been independently created no man can explain. Many other facts are, as it seems to me, explicable on this theory. How strange it is that a bird, under the form of a woodpecker, should prey on insects on the ground; that upland geese, which rarely or never swim, would possess webbed feet; that a thrush-like bird should dive and feed on sub-aquatic insects; and that a petrel should have the habits and structure fitting it for the life of an auk! and so in endless other cases. But on the view of each species constantly trying to increase in number, with natural selection always ready to adapt the slowly varying descendants of each to any unoccupied or ill-occupied place in nature, these facts cease to be strange, or might even have been anticipated. We can to a certain extent understand how it is that there is so much beauty throughout nature; for this may be largely attributed to the agency of selection. That beauty, according to our sense of it, is not universal, must be admitted by every one who will look at some venomous snakes, at some fishes, and at certain hideous bats with a distorted resemblance to the human face. Sexual selection has given the most brilliant colours, elegant patterns, and other ornaments to the males, and sometimes to both sexes of many birds, butterflies and other animals. With birds it has often rendered the voice of the male musical to the female, as well as to our ears. Flowers and fruit have been rendered conspicuous by brilliant colours in contrast with the green foliage, in order that the flowers may be easily seen, visited and fertilised by insects, and the seeds disseminated by birds. How it comes that certain colours, sounds and forms should give pleasure to man and the lower animals, that is, how the sense of beauty in its simplest form was first acquired, we do not know any more than how certain odours and flavours were first rendered agreeable. As natural selection acts by competition, it adapts and improves the inhabitants of each country only in relation to their co-inhabitants; so that we need feel no surprise at the species of any one country, although on the ordinary view supposed to have been created and specially adapted for that country, being beaten and supplanted by the naturalised productions from another land. Nor ought we to marvel if all the contrivances in nature be not, as far as we can judge, absolutely perfect; as in the case even of the human eye; or if some of them be abhorrent to our ideas of fitness. We need not marvel at the sting of the bee, when used against the enemy, causing the bee’s own death; at drones being produced in such great numbers for one single act, and being then slaughtered by their sterile sisters; at the astonishing waste of pollen by our fir-trees; at the instinctive hatred of the queen-bee for her own fertile daughters; at ichneumonidæ feeding within the living bodies of caterpillars; and at other such cases. The wonder, indeed, is, on the theory of natural selection, that more cases of the want of absolute perfection have not been detected. The complex and little known laws governing the production of varieties are the same, as far as we can judge, with the laws which have governed the production of distinct species. In both cases physical conditions seem to have produced some direct and definite effect, but how much we cannot say. Thus, when varieties enter any new station, they occasionally assume some of the characters proper to the species of that station. With both varieties and species, use and disuse seem to have produced a considerable effect; for it is impossible to resist this conclusion when we look, for instance, at the logger-headed duck, which has wings incapable of flight, in nearly the same condition as in the domestic duck; or when we look at the burrowing tucu-tucu, which is occasionally blind, and then at certain moles, which are habitually blind and have their eyes covered with skin; or when we look at the blind animals inhabiting the dark caves of America and Europe. With varieties and species, correlated variation seems to have played an important part, so that when one part has been modified other parts have been necessarily modified. With both varieties and species, reversions to long-lost characters occasionally occur. How inexplicable on the theory of creation is the occasional appearance of stripes on the shoulders and legs of the several species of the horse-genus and of their hybrids! How simply is this fact explained if we believe that these species are all descended from a striped progenitor, in the same manner as the several domestic breeds of the pigeon are descended from the blue and barred rock-pigeon! On the ordinary view of each species having been independently created, why should specific characters, or those by which the species of the same genus differ from each other, be more variable than the generic characters in which they all agree? Why, for instance, should the colour of a flower be more likely to vary in any one species of a genus, if the other species possess differently coloured flowers, than if all possessed the same coloured flowers? If species are only well-marked varieties, of which the characters have become in a high degree permanent, we can understand this fact; for they have already varied since they branched off from a common progenitor in certain characters, by which they have come to be specifically distinct from each other; therefore these same characters would be more likely again to vary than the generic characters which have been inherited without change for an immense period. It is inexplicable on the theory of creation why a part developed in a very unusual manner in one species alone of a genus, and therefore, as we may naturally infer, of great importance to that species, should be eminently liable to variation; but, on our view, this part has undergone, since the several species branched off from a common progenitor, an unusual amount of variability and modification, and therefore we might expect the part generally to be still variable. But a part may be developed in the most unusual manner, like the wing of a bat, and yet not be more variable than any other structure, if the part be common to many subordinate forms, that is, if it has been inherited for a very long period; for in this case it will have been rendered constant by long-continued natural selection. Glancing at instincts, marvellous as some are, they offer no greater difficulty than do corporeal structures on the theory of the natural selection of successive, slight, but profitable modifications. We can thus understand why nature moves by graduated steps in endowing different animals of the same class with their several instincts. I have attempted to show how much light the principle of gradation throws on the admirable architectural powers of the hive-bee. Habit no doubt often comes into play in modifying instincts; but it certainly is not indispensable, as we see in the case of neuter insects, which leave no progeny to inherit the effects of long-continued habit. On the view of all the species of the same genus having descended from a common parent, and having inherited much in common, we can understand how it is that allied species, when placed under widely different conditions of life, yet follow nearly the same instincts; why the thrushes of tropical and temperate South America, for instance, line their nests with mud like our British species. On the view of instincts having been slowly acquired through natural selection, we need not marvel at some instincts being not perfect and liable to mistakes, and at many instincts causing other animals to suffer. If species be only well-marked and permanent varieties, we can at once see why their crossed offspring should follow the same complex laws in their degrees and kinds of resemblance to their parents—in being absorbed into each other by successive crosses, and in other such points—as do the crossed offspring of acknowledged varieties. This similarity would be a strange fact, if species had been independently created and varieties had been produced through secondary laws. If we admit that the geological record is imperfect to an extreme degree, then the facts, which the record does give, strongly support the theory of descent with modification. New species have come on the stage slowly and at successive intervals; and the amount of change after equal intervals of time, is widely different in different groups. The extinction of species and of whole groups of species, which has played so conspicuous a part in the history of the organic world, almost inevitably follows from the principle of natural selection; for old forms are supplanted by new and improved forms. Neither single species nor groups of species reappear when the chain of ordinary generation is once broken. The gradual diffusion of dominant forms, with the slow modification of their descendants, causes the forms of life, after long intervals of time, to appear as if they had changed simultaneously throughout the world. The fact of the fossil remains of each formation being in some degree intermediate in character between the fossils in the formations above and below, is simply explained by their intermediate position in the chain of descent. The grand fact that all extinct beings can be classed with all recent beings, naturally follows from the living and the extinct being the offspring of common parents. As species have generally diverged in character during their long course of descent and modification, we can understand why it is that the more ancient forms, or early progenitors of each group, so often occupy a position in some degree intermediate between existing groups. Recent forms are generally looked upon as being, on the whole, higher in the scale of organisation than ancient forms; and they must be higher, in so far as the later and more improved forms have conquered the older and less improved forms in the struggle for life; they have also generally had their organs more specialised for different functions. This fact is perfectly compatible with numerous beings still retaining simple and but little improved structures, fitted for simple conditions of life; it is likewise compatible with some forms having retrograded in organisation, by having become at each stage of descent better fitted for new and degraded habits of life. Lastly, the wonderful law of the long endurance of allied forms on the same continent—of marsupials in Australia, of edentata in America, and other such cases—is intelligible, for within the same country the existing and the extinct will be closely allied by descent. Looking to geographical distribution, if we admit that there has been during the long course of ages much migration from one part of the world to another, owing to former climatical and geographical changes and to the many occasional and unknown means of dispersal, then we can understand, on the theory of descent with modification, most of the great leading facts in Distribution. We can see why there should be so striking a parallelism in the distribution of organic beings throughout space, and in their geological succession throughout time; for in both cases the beings have been connected by the bond of ordinary generation, and the means of modification have been the same. We see the full meaning of the wonderful fact, which has struck every traveller, namely, that on the same continent, under the most diverse conditions, under heat and cold, on mountain and lowland, on deserts and marshes, most of the inhabitants within each great class are plainly related; for they are the descendants of the same progenitors and early colonists. On this same principle of former migration, combined in most cases with modification, we can understand, by the aid of the Glacial period, the identity of some few plants, and the close alliance of many others, on the most distant mountains, and in the northern and southern temperate zones; and likewise the close alliance of some of the inhabitants of the sea in the northern and southern temperate latitudes, though separated by the whole intertropical ocean. Although two countries may present physical conditions as closely similar as the same species ever require, we need feel no surprise at their inhabitants being widely different, if they have been for a long period completely sundered from each other; for as the relation of organism to organism is the most important of all relations, and as the two countries will have received colonists at various periods and in different proportions, from some other country or from each other, the course of modification in the two areas will inevitably have been different. On this view of migration, with subsequent modification, we see why oceanic islands are inhabited by only few species, but of these, why many are peculiar or endemic forms. We clearly see why species belonging to those groups of animals which cannot cross wide spaces of the ocean, as frogs and terrestrial mammals, do not inhabit oceanic islands; and why, on the other hand, new and peculiar species of bats, animals which can traverse the ocean, are often found on islands far distant from any continent. Such cases as the presence of peculiar species of bats on oceanic islands and the absence of all other terrestrial mammals, are facts utterly inexplicable on the theory of independent acts of creation. The existence of closely allied representative species in any two areas, implies, on the theory of descent with modification, that the same parent-forms formerly inhabited both areas; and we almost invariably find that wherever many closely allied species inhabit two areas, some identical species are still common to both. Wherever many closely allied yet distinct species occur, doubtful forms and varieties belonging to the same groups likewise occur. It is a rule of high generality that the inhabitants of each area are related to the inhabitants of the nearest source whence immigrants might have been derived. We see this in the striking relation of nearly all the plants and animals of the Galapagos Archipelago, of Juan Fernandez, and of the other American islands, to the plants and animals of the neighbouring American mainland; and of those of the Cape de Verde Archipelago, and of the other African islands to the African mainland. It must be admitted that these facts receive no explanation on the theory of creation. The fact, as we have seen, that all past and present organic beings can be arranged within a few great classes, in groups subordinate to groups, and with the extinct groups often falling in between the recent groups, is intelligible on the theory of natural selection with its contingencies of extinction and divergence of character. On these same principles we see how it is that the mutual affinities of the forms within each class are so complex and circuitous. We see why certain characters are far more serviceable than others for classification; why adaptive characters, though of paramount importance to the beings, are of hardly any importance in classification; why characters derived from rudimentary parts, though of no service to the beings, are often of high classificatory value; and why embryological characters are often the most valuable of all. The real affinities of all organic beings, in contradistinction to their adaptive resemblances, are due to inheritance or community of descent. The Natural System is a genealogical arrangement, with the acquired grades of difference, marked by the terms, varieties, species, genera, families, &c.; and we have to discover the lines of descent by the most permanent characters, whatever they may be, and of however slight vital importance. The similar framework of bones in the hand of a man, wing of a bat, fin of the porpoise, and leg of the horse—the same number of vertebræ forming the neck of the giraffe and of the elephant—and innumerable other such facts, at once explain themselves on the theory of descent with slow and slight successive modifications. The similarity of pattern in the wing and in the leg of a bat, though used for such different purpose—in the jaws and legs of a crab—in the petals, stamens, and pistils of a flower, is likewise, to a large extent, intelligible on the view of the gradual modification of parts or organs, which were aboriginally alike in an early progenitor in each of these classes. On the principle of successive variations not always supervening at an early age, and being inherited at a corresponding not early period of life, we clearly see why the embryos of mammals, birds, reptiles, and fishes should be so closely similar, and so unlike the adult forms. We may cease marvelling at the embryo of an air-breathing mammal or bird having branchial slits and arteries running in loops, like those of a fish which has to breathe the air dissolved in water by the aid of well-developed branchiæ. Disuse, aided sometimes by natural selection, will often have reduced organs when rendered useless under changed habits or conditions of life; and we can understand on this view the meaning of rudimentary organs. But disuse and selection will generally act on each creature, when it has come to maturity and has to play its full part in the struggle for existence, and will thus have little power on an organ during early life; hence the organ will not be reduced or rendered rudimentary at this early age. The calf, for instance, has inherited teeth, which never cut through the gums of the upper jaw, from an early progenitor having well-developed teeth; and we may believe, that the teeth in the mature animal were formerly reduced by disuse owing to the tongue and palate, or lips, having become excellently fitted through natural selection to browse without their aid; whereas in the calf, the teeth have been left unaffected, and on the principle of inheritance at corresponding ages have been inherited from a remote period to the present day. On the view of each organism with all its separate parts having been specially created, how utterly inexplicable is it that organs bearing the plain stamp of inutility, such as the teeth in the embryonic calf or the shrivelled wings under the soldered wing-covers of many beetles, should so frequently occur. Nature may be said to have taken pains to reveal her scheme of modification, by means of rudimentary organs, of embryological and homologous structures, but we are too blind to understand her meaning. I have now recapitulated the facts and considerations which have thoroughly convinced me that species have been modified, during a long course of descent. This has been effected chiefly through the natural selection of numerous successive, slight, favourable variations; aided in an important manner by the inherited effects of the use and disuse of parts; and in an unimportant manner, that is, in relation to adaptive structures, whether past or present, by the direct action of external conditions, and by variations which seem to us in our ignorance to arise spontaneously. It appears that I formerly underrated the frequency and value of these latter forms of variation, as leading to permanent modifications of structure independently of natural selection. But as my conclusions have lately been much misrepresented, and it has been stated that I attribute the modification of species exclusively to natural selection, I may be permitted to remark that in the first edition of this work, and subsequently, I placed in a most conspicuous position—namely, at the close of the Introduction—the following words: “I am convinced that natural selection has been the main but not the exclusive means of modification.” This has been of no avail. Great is the power of steady misrepresentation; but the history of science shows that fortunately this power does not long endure. It can hardly be supposed that a false theory would explain, in so satisfactory a manner as does the theory of natural selection, the several large classes of facts above specified. It has recently been objected that this is an unsafe method of arguing; but it is a method used in judging of the common events of life, and has often been used by the greatest natural philosophers. The undulatory theory of light has thus been arrived at; and the belief in the revolution of the earth on its own axis was until lately supported by hardly any direct evidence. It is no valid objection that science as yet throws no light on the far higher problem of the essence or origin of life. Who can explain what is the essence of the attraction of gravity? No one now objects to following out the results consequent on this unknown element of attraction; notwithstanding that Leibnitz formerly accused Newton of introducing “occult qualities and miracles into philosophy.” I see no good reasons why the views given in this volume should shock the religious feelings of any one. It is satisfactory, as showing how transient such impressions are, to remember that the greatest discovery ever made by man, namely, the law of the attraction of gravity, was also attacked by Leibnitz, “as subversive of natural, and inferentially of revealed, religion.” A celebrated author and divine has written to me that “he has gradually learned to see that it is just as noble a conception of the Deity to believe that He created a few original forms capable of self-development into other and needful forms, as to believe that He required a fresh act of creation to supply the voids caused by the action of His laws.” Why, it may be asked, until recently did nearly all the most eminent living naturalists and geologists disbelieve in the mutability of species? It cannot be asserted that organic beings in a state of nature are subject to no variation; it cannot be proved that the amount of variation in the course of long ages is a limited quantity; no clear distinction has been, or can be, drawn between species and well-marked varieties. It cannot be maintained that species when intercrossed are invariably sterile and varieties invariably fertile; or that sterility is a special endowment and sign of creation. The belief that species were immutable productions was almost unavoidable as long as the history of the world was thought to be of short duration; and now that we have acquired some idea of the lapse of time, we are too apt to assume, without proof, that the geological record is so perfect that it would have afforded us plain evidence of the mutation of species, if they had undergone mutation. But the chief cause of our natural unwillingness to admit that one species has given birth to other and distinct species, is that we are always slow in admitting any great changes of which we do not see the steps. The difficulty is the same as that felt by so many geologists, when Lyell first insisted that long lines of inland cliffs had been formed, and great valleys excavated, by the agencies which we still see at work. The mind cannot possibly grasp the full meaning of the term of even a million years; it cannot add up and perceive the full effects of many slight variations, accumulated during an almost infinite number of generations. Although I am fully convinced of the truth of the views given in this volume under the form of an abstract, I by no means expect to convince experienced naturalists whose minds are stocked with a multitude of facts all viewed, during a long course of years, from a point of view directly opposite to mine. It is so easy to hide our ignorance under such expressions as the “plan of creation,” “unity of design,” &c., and to think that we give an explanation when we only restate a fact. Any one whose disposition leads him to attach more weight to unexplained difficulties than to the explanation of a certain number of facts will certainly reject the theory. A few naturalists, endowed with much flexibility of mind, and who have already begun to doubt the immutability of species, may be influenced by this volume; but I look with confidence to the future, to young and rising naturalists, who will be able to view both sides of the question with impartiality. Whoever is led to believe that species are mutable will do good service by conscientiously expressing his conviction; for thus only can the load of prejudice by which this subject is overwhelmed be removed. Several eminent naturalists have of late published their belief that a multitude of reputed species in each genus are not real species; but that other species are real, that is, have been independently created. This seems to me a strange conclusion to arrive at. They admit that a multitude of forms, which till lately they themselves thought were special creations, and which are still thus looked at by the majority of naturalists, and which consequently have all the external characteristic features of true species—they admit that these have been produced by variation, but they refuse to extend the same view to other and slightly different forms. Nevertheless, they do not pretend that they can define, or even conjecture, which are the created forms of life, and which are those produced by secondary laws. They admit variation as a vera causa in one case, they arbitrarily reject it in another, without assigning any distinction in the two cases. The day will come when this will be given as a curious illustration of the blindness of preconceived opinion. These authors seem no more startled at a miraculous act of creation than at an ordinary birth. But do they really believe that at innumerable periods in the earth’s history certain elemental atoms have been commanded suddenly to flash into living tissues? Do they believe that at each supposed act of creation one individual or many were produced? Were all the infinitely numerous kinds of animals and plants created as eggs or seed, or as full grown? and in the case of mammals, were they created bearing the false marks of nourishment from the mother’s womb? Undoubtedly some of these same questions cannot be answered by those who believe in the appearance or creation of only a few forms of life or of some one form alone. It has been maintained by several authors that it is as easy to believe in the creation of a million beings as of one; but Maupertuis’ philosophical axiom “of least action” leads the mind more willingly to admit the smaller number; and certainly we ought not to believe that innumerable beings within each great class have been created with plain, but deceptive, marks of descent from a single parent. As a record of a former state of things, I have retained in the foregoing paragraphs, and elsewhere, several sentences which imply that naturalists believe in the separate creation of each species; and I have been much censured for having thus expressed myself. But undoubtedly this was the general belief when the first edition of the present work appeared. I formerly spoke to very many naturalists on the subject of evolution, and never once met with any sympathetic agreement. It is probable that some did then believe in evolution, but they were either silent or expressed themselves so ambiguously that it was not easy to understand their meaning. Now, things are wholly changed, and almost every naturalist admits the great principle of evolution. There are, however, some who still think that species have suddenly given birth, through quite unexplained means, to new and totally different forms. But, as I have attempted to show, weighty evidence can be opposed to the admission of great and abrupt modifications. Under a scientific point of view, and as leading to further investigation, but little advantage is gained by believing that new forms are suddenly developed in an inexplicable manner from old and widely different forms, over the old belief in the creation of species from the dust of the earth. It may be asked how far I extend the doctrine of the modification of species. The question is difficult to answer, because the more distinct the forms are which we consider, by so much the arguments in favour of community of descent become fewer in number and less in force. But some arguments of the greatest weight extend very far. All the members of whole classes are connected together by a chain of affinities, and all can be classed on the same principle, in groups subordinate to groups. Fossil remains sometimes tend to fill up very wide intervals between existing orders. Organs in a rudimentary condition plainly show that an early progenitor had the organ in a fully developed condition, and this in some cases implies an enormous amount of modification in the descendants. Throughout whole classes various structures are formed on the same pattern, and at a very early age the embryos closely resemble each other. Therefore I cannot doubt that the theory of descent with modification embraces all the members of the same great class or kingdom. I believe that animals are descended from at most only four or five progenitors, and plants from an equal or lesser number. Analogy would lead me one step further, namely, to the belief that all animals and plants are descended from some one prototype. But analogy may be a deceitful guide. Nevertheless all living things have much in common, in their chemical composition, their cellular structure, their laws of growth, and their liability to injurious influences. We see this even in so trifling a fact as that the same poison often similarly affects plants and animals; or that the poison secreted by the gall-fly produces monstrous growths on the wild rose or oak-tree. With all organic beings, excepting perhaps some of the very lowest, sexual reproduction seems to be essentially similar. With all, as far as is at present known, the germinal vesicle is the same; so that all organisms start from a common origin. If we look even to the two main divisions—namely, to the animal and vegetable kingdoms—certain low forms are so far intermediate in character that naturalists have disputed to which kingdom they should be referred. As Professor Asa Gray has remarked, “the spores and other reproductive bodies of many of the lower algæ may claim to have first a characteristically animal, and then an unequivocally vegetable existence.” Therefore, on the principle of natural selection with divergence of character, it does not seem incredible that, from some such low and intermediate form, both animals and plants may have been developed; and, if we admit this, we must likewise admit that all the organic beings which have ever lived on this earth may be descended from some one primordial form. But this inference is chiefly grounded on analogy, and it is immaterial whether or not it be accepted. No doubt it is possible, as Mr. G.H. Lewes has urged, that at the first commencement of life many different forms were evolved; but if so, we may conclude that only a very few have left modified descendants. For, as I have recently remarked in regard to the members of each great kingdom, such as the Vertebrata, Articulata, &c., we have distinct evidence in their embryological, homologous, and rudimentary structures, that within each kingdom all the members are descended from a single progenitor. When the views advanced by me in this volume, and by Mr. Wallace or when analogous views on the origin of species are generally admitted, we can dimly foresee that there will be a considerable revolution in natural history. Systematists will be able to pursue their labours as at present; but they will not be incessantly haunted by the shadowy doubt whether this or that form be a true species. This, I feel sure and I speak after experience, will be no slight relief. The endless disputes whether or not some fifty species of British brambles are good species will cease. Systematists will have only to decide (not that this will be easy) whether any form be sufficiently constant and distinct from other forms, to be capable of definition; and if definable, whether the differences be sufficiently important to deserve a specific name. This latter point will become a far more essential consideration than it is at present; for differences, however slight, between any two forms, if not blended by intermediate gradations, are looked at by most naturalists as sufficient to raise both forms to the rank of species. Hereafter we shall be compelled to acknowledge that the only distinction between species and well-marked varieties is, that the latter are known, or believed to be connected at the present day by intermediate gradations, whereas species were formerly thus connected. Hence, without rejecting the consideration of the present existence of intermediate gradations between any two forms, we shall be led to weigh more carefully and to value higher the actual amount of difference between them. It is quite possible that forms now generally acknowledged to be merely varieties may hereafter be thought worthy of specific names; and in this case scientific and common language will come into accordance. In short, we shall have to treat species in the same manner as those naturalists treat genera, who admit that genera are merely artificial combinations made for convenience. This may not be a cheering prospect; but we shall at least be freed from the vain search for the undiscovered and undiscoverable essence of the term species. The other and more general departments of natural history will rise greatly in interest. The terms used by naturalists, of affinity, relationship, community of type, paternity, morphology, adaptive characters, rudimentary and aborted organs, &c., will cease to be metaphorical and will have a plain signification. When we no longer look at an organic being as a savage looks at a ship, as something wholly beyond his comprehension; when we regard every production of nature as one which has had a long history; when we contemplate every complex structure and instinct as the summing up of many contrivances, each useful to the possessor, in the same way as any great mechanical invention is the summing up of the labour, the experience, the reason, and even the blunders of numerous workmen; when we thus view each organic being, how far more interesting—I speak from experience—does the study of natural history become! A grand and almost untrodden field of inquiry will be opened, on the causes and laws of variation, on correlation, on the effects of use and disuse, on the direct action of external conditions, and so forth. The study of domestic productions will rise immensely in value. A new variety raised by man will be a far more important and interesting subject for study than one more species added to the infinitude of already recorded species. Our classifications will come to be, as far as they can be so made, genealogies; and will then truly give what may be called the plan of creation. The rules for classifying will no doubt become simpler when we have a definite object in view. We possess no pedigree or armorial bearings; and we have to discover and trace the many diverging lines of descent in our natural genealogies, by characters of any kind which have long been inherited. Rudimentary organs will speak infallibly with respect to the nature of long-lost structures. Species and groups of species which are called aberrant, and which may fancifully be called living fossils, will aid us in forming a picture of the ancient forms of life. Embryology will often reveal to us the structure, in some degree obscured, of the prototypes of each great class. When we can feel assured that all the individuals of the same species, and all the closely allied species of most genera, have, within a not very remote period descended from one parent, and have migrated from some one birth-place; and when we better know the many means of migration, then, by the light which geology now throws, and will continue to throw, on former changes of climate and of the level of the land, we shall surely be enabled to trace in an admirable manner the former migrations of the inhabitants of the whole world. Even at present, by comparing the differences between the inhabitants of the sea on the opposite sides of a continent, and the nature of the various inhabitants of that continent in relation to their apparent means of immigration, some light can be thrown on ancient geography. The noble science of geology loses glory from the extreme imperfection of the record. The crust of the earth, with its embedded remains, must not be looked at as a well-filled museum, but as a poor collection made at hazard and at rare intervals. The accumulation of each great fossiliferous formation will be recognised as having depended on an unusual occurrence of favourable circumstances, and the blank intervals between the successive stages as having been of vast duration. But we shall be able to gauge with some security the duration of these intervals by a comparison of the preceding and succeeding organic forms. We must be cautious in attempting to correlate as strictly contemporaneous two formations, which do not include many identical species, by the general succession of the forms of life. As species are produced and exterminated by slowly acting and still existing causes, and not by miraculous acts of creation; and as the most important of all causes of organic change is one which is almost independent of altered and perhaps suddenly altered physical conditions, namely, the mutual relation of organism to organism—the improvement of one organism entailing the improvement or the extermination of others; it follows, that the amount of organic change in the fossils of consecutive formations probably serves as a fair measure of the relative, though not actual lapse of time. A number of species, however, keeping in a body might remain for a long period unchanged, whilst within the same period, several of these species, by migrating into new countries and coming into competition with foreign associates, might become modified; so that we must not overrate the accuracy of organic change as a measure of time. In the future I see open fields for far more important researches. Psychology will be securely based on the foundation already well laid by Mr. Herbert Spencer, that of the necessary acquirement of each mental power and capacity by gradation. Much light will be thrown on the origin of man and his history. Authors of the highest eminence seem to be fully satisfied with the view that each species has been independently created. To my mind it accords better with what we know of the laws impressed on matter by the Creator, that the production and extinction of the past and present inhabitants of the world should have been due to secondary causes, like those determining the birth and death of the individual. When I view all beings not as special creations, but as the lineal descendants of some few beings which lived long before the first bed of the Cambrian system was deposited, they seem to me to become ennobled. Judging from the past, we may safely infer that not one living species will transmit its unaltered likeness to a distinct futurity. And of the species now living very few will transmit progeny of any kind to a far distant futurity; for the manner in which all organic beings are grouped, shows that the greater number of species in each genus, and all the species in many genera, have left no descendants, but have become utterly extinct. We can so far take a prophetic glance into futurity as to foretell that it will be the common and widely spread species, belonging to the larger and dominant groups within each class, which will ultimately prevail and procreate new and dominant species. As all the living forms of life are the lineal descendants of those which lived long before the Cambrian epoch, we may feel certain that the ordinary succession by generation has never once been broken, and that no cataclysm has desolated the whole world. Hence, we may look with some confidence to a secure future of great length. And as natural selection works solely by and for the good of each being, all corporeal and mental endowments will tend to progress towards perfection. It is interesting to contemplate a tangled bank, clothed with many plants of many kinds, with birds singing on the bushes, with various insects flitting about, and with worms crawling through the damp earth, and to reflect that these elaborately constructed forms, so different from each other, and dependent upon each other in so complex a manner, have all been produced by laws acting around us. These laws, taken in the largest sense, being Growth with reproduction; Inheritance which is almost implied by reproduction; Variability from the indirect and direct action of the conditions of life, and from use and disuse; a Ratio of Increase so high as to lead to a Struggle for Life, and as a consequence to Natural Selection, entailing Divergence of Character and the Extinction of less improved forms. Thus, from the war of nature, from famine and death, the most exalted object which we are capable of conceiving, namely, the production of the higher animals, directly follows. There is grandeur in this view of life, with its several powers, having been originally breathed by the Creator into a few forms or into one; and that, whilst this planet has gone circling on according to the fixed law of gravity, from so simple a beginning endless forms most beautiful and most wonderful have been, and are being evolved. GLOSSARY OF THE PRINCIPAL SCIENTIFIC TERMS USED IN THE PRESENT VOLUME.* * I am indebted to the kindness of Mr. W.S. Dallas for this Glossary, which has been given because several readers have complained to me that some of the terms used were unintelligible to them. Mr. Dallas has endeavoured to give the explanations of the terms in as popular a form as possible. ABERRANT.—Forms or groups of animals or plants which deviate in important characters from their nearest allies, so as not to be easily included in the same group with them, are said to be aberrant. ABERRATION (in Optics).—In the refraction of light by a convex lens the rays passing through different parts of the lens are brought to a focus at slightly different distances—this is called spherical aberration; at the same time the coloured rays are separated by the prismatic action of the lens and likewise brought to a focus at different distances—this is chromatic aberration. ABNORMAL.—Contrary to the general rule. ABORTED.—An organ is said to be aborted, when its development has been arrested at a very early stage. ALBINISM.—Albinos are animals in which the usual colouring matters characteristic of the species have not been produced in the skin and its appendages. Albinism is the state of being an albino. ALGÆ.—A class of plants including the ordinary sea-weeds and the filamentous fresh-water weeds. ALTERNATION OF GENERATIONS.—This term is applied to a peculiar mode of reproduction which prevails among many of the lower animals, in which the egg produces a living form quite different from its parent, but from which the parent-form is reproduced by a process of budding, or by the division of the substance of the first product of the egg. AMMONITES.—A group of fossil, spiral, chambered shells, allied to the existing pearly Nautilus, but having the partitions between the chambers waved in complicated patterns at their junction with the outer wall of the shell. ANALOGY.—That resemblance of structures which depends upon similarity of function, as in the wings of insects and birds. Such structures are said to be analogous, and to be analogues of each other. ANIMALCULE.—A minute animal: generally applied to those visible only by the microscope. ANNELIDS.—A class of worms in which the surface of the body exhibits a more or less distinct division into rings or segments, generally provided with appendages for locomotion and with gills. It includes the ordinary marine worms, the earth-worms, and the leeches. ANTENNÆ.—Jointed organs appended to the head in Insects, Crustacea and Centipedes, and not belonging to the mouth. ANTHERS.—The summits of the stamens of flowers, in which the pollen or fertilising dust is produced. APLACENTALIA, APLACENTATA or Aplacental Mammals.—See mammalia. ARCHETYPAL.—Of or belonging to the Archetype, or ideal primitive form upon which all the beings of a group seem to be organised. ARTICULATA.—A great division of the Animal Kingdom characterised generally by having the surface of the body divided into rings called segments, a greater or less number of which are furnished with jointed legs (such as Insects, Crustaceans and Centipedes). ASYMMETRICAL.—Having the two sides unlike. ATROPHIED.—Arrested in development at a very early stage. BALANUS.—The genus including the common Acorn-shells which live in abundance on the rocks of the sea-coast. BATRACHIANS.—A class of animals allied to the Reptiles, but undergoing a peculiar metamorphosis, in which the young animal is generally aquatic and breathes by gills. (Examples, Frogs, Toads, and Newts.) BOULDERS.—Large transported blocks of stone generally embedded in clays or gravels. BRACHIOPODA.—A class of marine Mollusca, or soft-bodied animals, furnished with a bivalve shell, attached to submarine objects by a stalk which passes through an aperture in one of the valves, and furnished with fringed arms, by the action of which food is carried to the mouth. BRANCHIÆ.—Gills or organs for respiration in water. BRANCHIAL.—Pertaining to gills or branchiæ. CAMBRIAN SYSTEM.—A series of very ancient Palæozoic rocks, between the Laurentian and the Silurian. Until recently these were regarded as the oldest fossiliferous rocks. CANIDÆ.—The Dog-family, including the Dog, Wolf, Fox, Jackal, &c. CARAPACE.—The shell enveloping the anterior part of the body in Crustaceans generally; applied also to the hard shelly pieces of the Cirripedes. CARBONIFEROUS.—This term is applied to the great formation which includes, among other rocks, the coal-measures. It belongs to the oldest, or Palæozoic, system of formations. CAUDAL.—Of or belonging to the tail. CEPHALOPODS.—The highest class of the Mollusca, or soft-bodied animals, characterised by having the mouth surrounded by a greater or less number of fleshy arms or tentacles, which, in most living species, are furnished with sucking-cups. (Examples, Cuttle-fish, Nautilus.) CETACEA.—An order of Mammalia, including the Whales, Dolphins, &c., having the form of the body fish-like, the skin naked, and only the fore limbs developed. CHELONIA.—An order of Reptiles including the Turtles, Tortoises, &c. CIRRIPEDES.—An order of Crustaceans including the Barnacles and Acorn-shells. Their young resemble those of many other Crustaceans in form; but when mature they are always attached to other objects, either directly or by means of a stalk, and their bodies are enclosed by a calcareous shell composed of several pieces, two of which can open to give issue to a bunch of curled, jointed tentacles, which represent the limbs. COCCUS.—The genus of Insects including the Cochineal. In these the male is a minute, winged fly, and the female generally a motionless, berry-like mass. COCOON.—A case usually of silky material, in which insects are frequently enveloped during the second or resting-stage (pupa) of their existence. The term “cocoon-stage” is here used as equivalent to “pupa-stage.” CŒLOSPERMOUS.—A term applied to those fruits of the Umbelliferæ which have the seed hollowed on the inner face. COLEOPTERA.—Beetles, an order of Insects, having a biting mouth and the first pair of wings more or less horny, forming sheaths for the second pair, and usually meeting in a straight line down the middle of the back. COLUMN.—A peculiar organ in the flowers of Orchids, in which the stamens, style and stigma (or the reproductive parts) are united. COMPOSITÆ or COMPOSITOUS PLANTS.—Plants in which the inflorescence consists of numerous small flowers (florets) brought together into a dense head, the base of which is enclosed by a common envelope. (Examples, the Daisy, Dandelion, &c.) CONFERVÆ.—The filamentous weeds of fresh water. CONGLOMERATE.—A rock made up of fragments of rock or pebbles, cemented together by some other material. COROLLA.—The second envelope of a flower usually composed of coloured, leaf-like organs (petals), which may be united by their edges either in the basal part or throughout. CORRELATION.—The normal coincidence of one phenomenon, character, &c., with another. CORYMB.—A bunch of flowers in which those springing from the lower part of the flower stalks are supported on long stalks so as to be nearly on a level with the upper ones. COTYLEDONS.—The first or seed-leaves of plants. CRUSTACEANS.—A class of articulated animals, having the skin of the body generally more or less hardened by the deposition of calcareous matter, breathing by means of gills. (Examples, Crab, Lobster, Shrimp, &c.) CURCULIO.—The old generic term for the Beetles known as Weevils, characterised by their four-jointed feet, and by the head being produced into a sort of beak, upon the sides of which the antennæ are inserted. CUTANEOUS.—Of or belonging to the skin. DEGRADATION.—The wearing down of land by the action of the sea or of meteoric agencies. DENUDATION.—The wearing away of the surface of the land by water. DEVONIAN SYSTEM or FORMATION.—A series of Palæozoic rocks, including the Old Red Sandstone. DICOTYLEDONS, or DICOTYLEDONOUS PLANTS.—A class of plants characterised by having two seed-leaves, by the formation of new wood between the bark and the old wood (exogenous growth) and by the reticulation of the veins of the leaves. The parts of the flowers are generally in multiples of five. DIFFERENTATION.—The separation or discrimination of parts or organs which in simpler forms of life are more or less united. DIMORPHIC.—Having two distinct forms.—DIMORPHISM is the condition of the appearance of the same species under two dissimilar forms. DIOECIOUS.—Having the organs of the sexes upon distinct individuals. DIORITE.—A peculiar form of Greenstone. DORSAL.—Of or belonging to the back. EDENTATA.—A peculiar order of Quadrupeds, characterised by the absence of at least the middle incisor (front) teeth in both jaws. (Examples, the Sloths and Armadillos.) ELYTRA.—The hardened fore-wings of Beetles, serving as sheaths for the membranous hind-wings, which constitute the true organs of flight. EMBRYO.—The young animal undergoing development within the egg or womb. EMBRYOLOGY.—The study of the development of the embryo. ENDEMIC.—Peculiar to a given locality. ENTOMOSTRACA.—A division of the class Crustacea, having all the segments of the body usually distinct, gills attached to the feet or organs of the mouth, and the feet fringed with fine hairs. They are generally of small size. EOCENE.—The earliest of the three divisions of the Tertiary epoch of geologists. Rocks of this age contain a small proportion of shells identical with species now living. EPHEMEROUS INSECTS.—Insects allied to the May-fly. FAUNA.—The totality of the animals naturally inhabiting a certain country or region, or which have lived during a given geological period. FELIDÆ.—The Cat-family. FERAL.—Having become wild from a state of cultivation or domestication. FLORA.—The totality of the plants growing naturally in a country, or during a given geological period. FLORETS.—Flowers imperfectly developed in some respects, and collected into a dense spike or head, as in the Grasses, the Dandelion, &c. FOETAL.—Of or belonging to the foetus, or embryo in course of development. FORAMINIFERA.—A class of animals of very low organisation and generally of small size, having a jelly-like body, from the surface of which delicate filaments can be given off and retracted for the prehension of external objects, and having a calcareous or sandy shell, usually divided into chambers and perforated with small apertures. FOSSILIFEROUS.—Containing fossils. FOSSORIAL.—Having a faculty of digging. The Fossorial Hymenoptera are a group of Wasp-like Insects, which burrow in sandy soil to make nests for their young. FRENUM (pl. FRENA).—A small band or fold of skin. FUNGI (sing. FUNGUS).—A class of cellular plants, of which Mushrooms, Toadstools, and Moulds, are familiar examples. FURCULA.—The forked bone formed by the union of the collar-bones in many birds, such as the common Fowl. GALLINACEOUS BIRDS.—An order of birds of which the common Fowl, Turkey, and Pheasant, are well-known examples. GALLUS.—The genus of birds which includes the common Fowl. GANGLION.—A swelling or knot from which nerves are given off as from a centre. GANOID FISHES.—Fishes covered with peculiar enamelled bony scales. Most of them are extinct. GERMINAL VESICLE.—A minute vesicle in the eggs of animals, from which the development of the embryo proceeds. GLACIAL PERIOD.—A period of great cold and of enormous extension of ice upon the surface of the earth. It is believed that glacial periods have occurred repeatedly during the geological history of the earth, but the term is generally applied to the close of the Tertiary epoch, when nearly the whole of Europe was subjected to an arctic climate. GLAND.—An organ which secretes or separates some peculiar product from the blood or sap of animals or plants. GLOTTIS.—The opening of the windpipe into the œsophagus or gullet. GNEISS.—A rock approaching granite in composition, but more or less laminated, and really produced by the alteration of a sedimentary deposit after its consolidation. GRALLATORES.—The so-called wading-birds (storks, cranes, snipes, &c.), which are generally furnished with long legs, bare of feathers above the heel, and have no membranes between the toes. GRANITE.—A rock consisting essentially of crystals of felspar and mica in a mass of quartz. HABITAT.—The locality in which a plant or animal naturally lives. HEMIPTERA.—An order or sub-order of insects, characterised by the possession of a jointed beak or rostrum, and by having the fore-wings horny in the basal portion and membranous at the extremity, where they cross each other. This group includes the various species of bugs. HERMAPHRODITE.—Possessing the organs of both sexes. HOMOLOGY.—That relation between parts which results from their development from corresponding embryonic parts, either in different animals, as in the case of the arm of man, the fore-leg of a quadruped, and the wing of a bird; or in the same individual, as in the case of the fore and hind legs in quadrupeds, and the segments or rings and their appendages of which the body of a worm, a centipede, &c., is composed. The latter is called serial homology. The parts which stand in such a relation to each other are said to be homologous, and one such part or organ is called the homologue of the other. In different plants the parts of the flower are homologous, and in general these parts are regarded as homologous with leaves. HOMOPTERA.—An order or sub-order of insects having (like the Hemiptera) a jointed beak, but in which the fore-wings are either wholly membranous or wholly leathery, The Cicadæ, frog-hoppers, and Aphides, are well-known examples. HYBRID.—The offspring of the union of two distinct species. HYMENOPTERA.—An order of insects possessing biting jaws and usually four membranous wings in which there are a few veins. Bees and wasps are familiar examples of this group. HYPERTROPHIED.—Excessively developed. ICHNEUMONIDÆ.—A family of hymenopterous insects, the members of which lay their eggs in the bodies or eggs of other insects. IMAGO.—The perfect (generally winged) reproductive state of an insect. INDIGENES.—The aboriginal animal or vegetable inhabitants of a country or region. INFLORESCENCE.—The mode of arrangement of the flowers of plants. INFUSORIA.—A class of microscopic animalcules, so called from their having originally been observed in infusions of vegetable matters. They consist of a gelatinous material enclosed in a delicate membrane, the whole or part of which is furnished with short vibrating hairs (called cilia), by means of which the animalcules swim through the water or convey the minute particles of their food to the orifice of the mouth. INSECTIVOROUS.—Feeding on insects. INVERTEBRATA, or INVERTEBRATE ANIMALS.—Those animals which do not possess a backbone or spinal column. LACUNÆ.—Spaces left among the tissues in some of the lower animals and serving in place of vessels for the circulation of the fluids of the body. LAMELLATED.—Furnished with lamellæ or little plates. LARVA (pl. LARVÆ).—The first condition of an insect at its issuing from the egg, when it is usually in the form of a grub, caterpillar, or maggot. LARYNX.—The upper part of the windpipe opening into the gullet. LAURENTIAN.—A group of greatly altered and very ancient rocks, which is greatly developed along the course of the St. Laurence, whence the name. It is in these that the earliest known traces of organic bodies have been found. LEGUMINOSÆ.—An order of plants represented by the common peas and beans, having an irregular flower in which one petal stands up like a wing, and the stamens and pistil are enclosed in a sheath formed by two other petals. The fruit is a pod (or legume). LEMURIDÆ.—A group of four-handed animals, distinct from the monkeys and approaching the insectivorous quadrupeds in some of their characters and habits. Its members have the nostrils curved or twisted, and a claw instead of a nail upon the first finger of the hind hands. LEPIDOPTERA.—An order of insects, characterised by the possession of a spiral proboscis, and of four large more or less scaly wings. It includes the well-known butterflies and moths. LITTORAL.—Inhabiting the seashore. LOESS.—A marly deposit of recent (Post-Tertiary) date, which occupies a great part of the valley of the Rhine. MALACOSTRACA.—The higher division of the Crustacea, including the ordinary crabs, lobsters, shrimps, &c., together with the woodlice and sand-hoppers. MAMMALIA.—The highest class of animals, including the ordinary hairy quadrupeds, the whales and man, and characterised by the production of living young which are nourished after birth by milk from the teats (Mammæ, Mammary glands) of the mother. A striking difference in embryonic development has led to the division of this class into two great groups; in one of these, when the embryo has attained a certain stage, a vascular connection, called the placenta, is formed between the embryo and the mother; in the other this is wanting, and the young are produced in a very incomplete state. The former, including the greater part of the class, are called Placental Mammals; the latter, or Aplacental Mammals, include the Marsupials and Monotremes (Ornithorhynchus). MAMMIFEROUS.—Having mammæ or teats (see MAMMALIA). MANDIBLES.—in insects, the first or uppermost pair of jaws, which are generally solid, horny, biting organs. In birds the term is applied to both jaws with their horny coverings. In quadrupeds the mandible is properly the lower jaw. MARSUPIALS.—An order of Mammalia in which the young are born in a very incomplete state of development, and carried by the mother, while sucking, in a ventral pouch (marsupium), such as the kangaroos, opossums, &c. (see MAMMALIA). MAXILLÆ.—in insects, the second or lower pair of jaws, which are composed of several joints and furnished with peculiar jointed appendages called palpi, or feelers. MELANISM.—The opposite of albinism; an undue development of colouring material in the skin and its appendages. METAMORPHIC ROCKS.—Sedimentary rocks which have undergone alteration, generally by the action of heat, subsequently to their deposition and consolidation. MOLLUSCA.—One of the great divisions of the animal kingdom, including those animals which have a soft body, usually furnished with a shell, and in which the nervous ganglia, or centres, present no definite general arrangement. They are generally known under the denomination of “shellfish”; the cuttle-fish, and the common snails, whelks, oysters, mussels, and cockles, may serve as examples of them. MONOCOTYLEDONS, or MONOCOTYLEDONOUS PLANTS.—Plants in which the seed sends up only a single seed-leaf (or cotyledon); characterised by the absence of consecutive layers of wood in the stem (endogenous growth), by the veins of the leaves being generally straight, and by the parts of the flowers being generally in multiples of three. (Examples, Grasses, Lilies, Orchids, Palms, &c.) MORAINES.—The accumulations of fragments of rock brought down by glaciers. MORPHOLOGY.—The law of form or structure independent of function. MYSIS-STAGE.—A stage in the development of certain crustaceans (prawns), in which they closely resemble the adults of a genus (Mysis) belonging to a slightly lower group. NASCENT.—Commencing development. NATATORY.—Adapted for the purpose of swimming. NAUPLIUS-FORM.—The earliest stage in the development of many Crustacea, especially belonging to the lower groups. In this stage the animal has a short body, with indistinct indications of a division into segments, and three pairs of fringed limbs. This form of the common fresh-water Cyclops was described as a distinct genus under the name of Nauplius. NEURATION.—The arrangement of the veins or nervures in the wings of insects. NEUTERS.—Imperfectly developed females of certain social insects (such as ants and bees), which perform all the labours of the community. Hence, they are also called workers. NICTITATING MEMBRANE.—A semi-transparent membrane, which can be drawn across the eye in birds and reptiles, either to moderate the effects of a strong light or to sweep particles of dust, &c., from the surface of the eye. OCELLI.—The simple eyes or stemmata of insects, usually situated on the crown of the head between the great compound eyes. ŒSOPHAGUS.—The gullet. OOLITIC.—A great series of secondary rocks, so called from the texture of some of its members, which appear to be made up of a mass of small EGG-LIKE calcareous bodies. OPERCULUM.—A calcareous plate employed by many Molluscæ to close the aperture of their shell. The OPERCULAR VALVES of Cirripedes are those which close the aperture of the shell. ORBIT.—The bony cavity for the reception of the eye. ORGANISM.—An organised being, whether plant or animal. ORTHOSPERMOUS.—A term applied to those fruits of the Umbelliferæ which have the seed straight. OSCULANT.—Forms or groups apparently intermediate between and connecting other groups are said to be osculant. OVA.—Eggs. OVARIUM or OVARY (in plants).—The lower part of the pistil or female organ of the flower, containing the ovules or incipient seeds; by growth after the other organs of the flower have fallen, it usually becomes converted into the fruit. OVIGEROUS.—Egg-bearing. OVULES (of plants).—The seeds in the earliest condition. PACHYDERMS.—A group of Mammalia, so called from their thick skins, and including the elephant, rhinoceros, hippopotamus, &c. PALÆOZOIC.—The oldest system of fossiliferous rocks. PALPI.—Jointed appendages to some of the organs of the mouth in insects and Crustacea. PAPILIONACEÆ.—An order of plants (see LEGUMINOSÆ), The flowers of these plants are called papilionaceous, or butterfly-like, from the fancied resemblance of the expanded superior petals to the wings of a butterfly. PARASITE.—An animal or plant living upon or in, and at the expense of, another organism. PARTHENOGENESIS.—The production of living organisms from unimpregnated eggs or seeds. PEDUNCULATED.—Supported upon a stem or stalk. The pedunculated oak has its acorns borne upon a footstool. PELORIA or PELORISM.—The appearance of regularity of structure in the flowers of plants which normally bear irregular flowers. PELVIS.—The bony arch to which the hind limbs of vertebrate animals are articulated. PETALS.—The leaves of the corolla, or second circle of organs in a flower. They are usually of delicate texture and brightly coloured. PHYLLODINEOUS.—Having flattened, leaf-like twigs or leafstalks instead of true leaves. PIGMENT.—The colouring material produced generally in the superficial parts of animals. The cells secreting it are called pigment-cells. PINNATE.—Bearing leaflets on each side of a central stalk. PISTILS.—The female organs of a flower, which occupy a position in the centre of the other floral organs. The pistil is generally divisible into the ovary or germen, the style and the stigma. PLACENTALIA, PLACENTATA.—or PLACENTAL MAMMALS, See MAMMALIA. PLANTIGRADES.—Quadrupeds which walk upon the whole sole of the foot, like the bears. PLASTIC.—Readily capable of change. PLEISTOCENE PERIOD.—The latest portion of the Tertiary epoch. PLUMULE (in plants).—The minute bud between the seed-leaves of newly-germinated plants. PLUTONIC ROCKS.—Rocks supposed to have been produced by igneous action in the depths of the earth. POLLEN.—The male element in flowering plants; usually a fine dust produced by the anthers, which, by contact with the stigma effects the fecundation of the seeds. This impregnation is brought about by means of tubes (pollen-tubes) which issue from the pollen-grains adhering to the stigma, and penetrate through the tissues until they reach the ovary. POLYANDROUS (flowers).—Flowers having many stamens. POLYGAMOUS PLANTS.—Plants in which some flowers are unisexual and others hermaphrodite. The unisexual (male and female) flowers, may be on the same or on different plants. POLYMORPHIC.—Presenting many forms. POLYZOARY.—The common structure formed by the cells of the Polyzoa, such as the well-known seamats. PREHENSILE.—Capable of grasping. PREPOTENT.—Having a superiority of power. PRIMARIES.—The feathers forming the tip of the wing of a bird, and inserted upon that part which represents the hand of man. PROCESSES.—Projecting portions of bones, usually for the attachment of muscles, ligaments, &c. PROPOLIS.—A resinous material collected by the hivebees from the opening buds of various trees. PROTEAN.—Exceedingly variable. PROTOZOA.—The lowest great division of the animal kingdom. These animals are composed of a gelatinous material, and show scarcely any trace of distinct organs. The Infusoria, Foraminifera, and sponges, with some other forms, belong to this division. PUPA (pl. PUPÆ).—The second stage in the development of an insect, from which it emerges in the perfect (winged) reproductive form. In most insects the pupal stage is passed in perfect repose. The chrysalis is the pupal state of butterflies. RADICLE.—The minute root of an embryo plant. RAMUS.—One half of the lower jaw in the Mammalia. The portion which rises to articulate with the skull is called the ascending ramus. RANGE.—The extent of country over which a plant or animal is naturally spread. Range in time expresses the distribution of a species or group through the fossiliferous beds of the earth’s crust. RETINA.—The delicate inner coat of the eye, formed by nervous filaments spreading from the optic nerve, and serving for the perception of the impressions produced by light. RETROGRESSION.—Backward development. When an animal, as it approaches maturity, becomes less perfectly organised than might be expected from its early stages and known relationships, it is said to undergo a retrogade development or metamorphosis. RHIZOPODS.—A class of lowly organised animals (Protozoa), having a gelatinous body, the surface of which can be protruded in the form of root-like processes or filaments, which serve for locomotion and the prehension of food. The most important order is that of the Foraminifera. RODENTS.—The gnawing Mammalia, such as the rats, rabbits, and squirrels. They are especially characterised by the possession of a single pair of chisel-like cutting teeth in each jaw, between which and the grinding teeth there is a great gap. RUBUS.—The bramble genus. RUDIMENTARY.—Very imperfectly developed. RUMINANTS.—The group of quadrupeds which ruminate or chew the cud, such as oxen, sheep, and deer. They have divided hoofs, and are destitute of front teeth in the upper jaw. SACRAL.—Belonging to the sacrum, or the bone composed usually of two or more united vertebræ to which the sides of the pelvis in vertebrate animals are attached. SARCODE.—The gelatinous material of which the bodies of the lowest animals (Protozoa) are composed. SCUTELLÆ.—The horny plates with which the feet of birds are generally more or less covered, especially in front. SEDIMENTARY FORMATIONS.—Rocks deposited as sediments from water. SEGMENTS.—The transverse rings of which the body of an articulate animal or annelid is composed. SEPALS.—The leaves or segments of the calyx, or outermost envelope of an ordinary flower. They are usually green, but sometimes brightly coloured. SERRATURES.—Teeth like those of a saw. SESSILE.—Not supported on a stem or footstalk. SILURIAN SYSTEM.—A very ancient system of fossiliferous rocks belonging to the earlier part of the Palæozoic series. SPECIALISATION.—The setting apart of a particular organ for the performance of a particular function. SPINAL CORD.—The central portion of the nervous system in the Vertebrata, which descends from the brain through the arches of the vertebræ, and gives off nearly all the nerves to the various organs of the body. STAMENS.—The male organs of flowering plants, standing in a circle within the petals. They usually consist of a filament and an anther, the anther being the essential part in which the pollen, or fecundating dust, is formed. STERNUM.—The breast-bone. STIGMA.—The apical portion of the pistil in flowering plants. STIPULES.—Small leafy organs placed at the base of the footstalks of the leaves in many plants. STYLE.—The middle portion of the perfect pistil, which rises like a column from the ovary and supports the stigma at its summit. SUBCUTANEOUS.—Situated beneath the skin. SUCTORIAL.—Adapted for sucking. SUTURES (in the skull).—The lines of junction of the bones of which the skull is composed. TARSUS (pl. TARSI).—The jointed feet of articulate animals, such as insects. TELEOSTEAN FISHES.—Fishes of the kind familiar to us in the present day, having the skeleton usually completely ossified and the scales horny. TENTACULA or TENTACLES.—Delicate fleshy organs of prehension or touch possessed by many of the lower animals. TERTIARY.—The latest geological epoch, immediately preceding the establishment of the present order of things. TRACHEA.—The windpipe or passage for the admission of air to the lungs. TRIDACTYLE.—Three-fingered, or composed of three movable parts attached to a common base. TRILOBITES.—A peculiar group of extinct crustaceans, somewhat resembling the woodlice in external form, and, like some of them, capable of rolling themselves up into a ball. Their remains are found only in the Palæozoic rocks, and most abundantly in those of Silurian age. TRIMORPHIC.—Presenting three distinct forms. UMBELLIFERÆ.—An order of plants in which the flowers, which contain five stamens and a pistil with two styles, are supported upon footstalks which spring from the top of the flower stem and spread out like the wires of an umbrella, so as to bring all the flowers in the same head (umbel) nearly to the same level. (Examples, Parsley and Carrot.) UNGULATA.—Hoofed quadrupeds. UNICELLULAR.—Consisting of a single cell. VASCULAR.—Containing blood-vessels. VERMIFORM.—Like a worm. VERTEBRATA or VERTEBRATE ANIMALS.—The highest division of the animal kingdom, so called from the presence in most cases of a backbone composed of numerous joints or vertebræ, which constitutes the centre of the skeleton and at the same time supports and protects the central parts of the nervous system. WHORLS.—The circles or spiral lines in which the parts of plants are arranged upon the axis of growth. WORKERS.—See neuters. ZOËA-STAGE.—The earliest stage in the development of many of the higher Crustacea, so called from the name of Zoëa applied to these young animals when they were supposed to constitute a peculiar genus. ZOOIDS.—In many of the lower animals (such as the Corals, Medusæ, &c.) reproduction takes place in two ways, namely, by means of eggs and by a process of budding with or without separation from the parent of the product of the latter, which is often very different from that of the egg. The individuality of the species is represented by the whole of the form produced between two sexual reproductions; and these forms, which are apparently individual animals, have been called zooids. END Dated November 24, 1859 From gutenberg.org Inscribed by etching.net - ordinal 1225514403088438 Support the preservation of knowledge and culture with Monero (XMR): 89ZxK6mqazJMZoXFwHTQsgYwVaXTijQb5Npt8XAjaLkmfoEnpZ3XGkj5eD5PdVt1vehqq2FreGpuCUbRFsU6KiVnFrGfbT8