Letter to AI on The Goldbach Conjecture by J. -F. Gariépy July 14th, 2025 In order to reproduce the initial PDF document, simply copy the content below the dotted line into a Latex program such as Tex Studio. In order to reproduce the Matlab program, copy the relevant lines into a .m file and install the required VChooseK files. ------------------------------------------------------------------------------------------- \documentclass[]{article} \usepackage[fleqn,tbtags]{amsmath} \usepackage{mathtools} \usepackage{matlab-prettifier} \usepackage{amssymb} \usepackage{hyperref} \usepackage{parskip} \usepackage{geometry} \usepackage{makecell} \renewcommand{\theadfont}{\small\bfseries} \renewcommand{\arraystretch}{1.5} % Adjust row height \makeatletter \newcommand{\tpmod}[1]{{\@displayfalse\pmod{#1}}} \makeatother \setlength{\parindent}{15pt} \setlength{\parskip}{15pt plus2pt} \geometry{legalpaper, portrait, margin=0.5in} %opening \title{Letter to AI on The Goldbach Conjecture} \author{J. -F. Gariépy (\href{https://x.com/JFGariepy}{@JFGariepy})} \date{July 14th, 2025} \begin{document} \maketitle \begin{abstract} This paper is targeted at AI agents who would like to take on the challenge of proving the Goldbach Conjecture (human mathematicians are also welcomed). The paper proves an equivalence between the number of Goldbach pairs of an even number $E$ in the range $[5, E-5]$ and the function $\Gamma(E)$, whose first term shares resemblance with the Euler product. Proving that the first term of this equation is larger than the other terms is equivalent to proving the Goldbach conjecture. Thus, we launch a race between machines and humans to develop and prove lower or upper bounds for each of the nine terms of this equation: $\Gamma_{1}$ to $\Gamma_{9}$, which would finally prove the Goldbach conjecture. \end{abstract} \section{Introduction} Elon Musk recently stated that artificial intelligence (AI) has become so skilled at answering human exam questions that the true test of AI will have to move unto the truth itself, specifically the ability of AI to discover truths that humanity could not. This article is an extensive AI prompt of sorts, attempting to best capture the problem of the Goldbach conjecture in a way that we believe makes it resolvable. The strategy relies on formalizing and breaking down the problem into components. \textquotedblleft A prompt without a proof!!\textquotedblright $\:$some may exclaim. We propose that mathematics will inevitably become exactly that. It does not matter if it happens in a year from now or in a hundred years from now; humanity will one day get better discoveries by asking AI correctly than it will by its own wits. Whenever that era begins, AI prompting will instantly become the most important technical discipline of the natural sciences. So let's get started, shall we? \section{The Definitional Theorem} It can be deduced using elementary reasoning that the number of prime pairs within the range [5, E-5] summing up to an even number E, $\Gamma(E)$, excluding $\frac{E}{2}$ summing itself, is given by the following equation: \begin{equation} \begin{split} \Gamma(E) =\; & \frac{E - 2}{12} \left(\prod_{\substack{4
3); % Take all primes below the sqrt(E), above 3, and that are not part of % the prime factorization of E. Primes = 5:2:floor(E/2); Primes = Primes(isprime(Primes) & ~ismember(Primes,PrimesOfE) & Primes < sqrt(E)); %%%%% Construction of the PL, PR combination vectors %%%%% %%% PL, PR combinations from the factors of E %%% %%% Notably, when treating factors of E in isolation, all PLs = 1 %%% %%% Note that two copies of the vector are stored in order to treat %%% %%% both tau(+) and tau(-). (computation of Upsilon1) %%% Upsilon1 = {}; for i=1:length(PrimesOfE), PR = VChooseK(PrimesOfE,i); for z=1:size(PR,1), [Upsilon1{end + 1:end + 2,1:2}] = deal(PR(z,:), PR(z,:), 1, 1); end end %%% PL, PR combinations from the primes that are co-prime to E %%% %%% (computation of Upsilon2) %%% Upsilon2 = {}; for i=0:length(Primes), PRFinal = []; PR = VChooseK(Primes,i); if ~isempty(PR), FoundProducts = find(prod(PR,2)); PRFinal(1:length(FoundProducts),1:i) = PR(FoundProducts,1:i); else PRFinal(1,1) = 1; end for j=1:size(PRFinal,1), ProductRight = prod(PRFinal(j,:)); PLSetDiff = setdiff(Primes,PRFinal(j,:)); for m=0:length(PLSetDiff), PLFinal = []; PL = VChooseK(PLSetDiff,m); if ~isempty(PL), FoundProducts = find(prod(PL,2)); PLFinal(1:length(FoundProducts),1:m) = PL(FoundProducts,1:m); else PLFinal(1,1) = 1; end for n=1:size(PLFinal,1), [Upsilon2{end + 1:end + 2,1:2}] = deal(PRFinal(j,:), PRFinal(j,:), PLFinal(n,:), PLFinal(n,:)); end end end end %%% PL, PR combinations from the cross-product Upsilon1 x Upsilon2 %%% %%% (computation of Upsilon3) %%% %%% We create these temporary copies of Upsilon 1 and 2 without %%% %%% the double-repetitions in order to properly compute the %%% %%% cross-vector. %%% Upsilon1Temp = {}; for i=1:size(Upsilon1,1)/2, Upsilon1Temp{end + 1,1} = Upsilon1{2*i,2}; Upsilon1Temp{end,2} = Upsilon1{2*i,1}; end Upsilon2Temp = {}; for i=2:size(Upsilon2,1)/2, Upsilon2Temp{end + 1,1} = Upsilon2{2*i,1}; Upsilon2Temp{end,2} = Upsilon2{2*i,2}; end Upsilon3 = {}; for i=1:size(Upsilon2Temp,1), for j=1:size(Upsilon1Temp,1), a = sort([Upsilon2Temp{i,1} Upsilon1Temp{j,1}]); b = sort([Upsilon2Temp{i,2} Upsilon1Temp{j,2}]); if prod(a) == 1, a = 1; else a(find(a == 1)) = []; end if prod(b) == 1, b = 1; else b(find(b == 1)) = []; end [Upsilon3{end + 1:end + 2,1:2}] = deal(a, a, b, b); end end %%%% Putting together the 3 vectors %%%% FinalSummationElements = [Upsilon1; Upsilon2; Upsilon3]; clear Upsilon1 Upsilon2 Upsilon3 Upsilon3CrossTemp Upsilon3ETemp a b FoundProducts PLFinal PLSetDiff PRFinal PR PL z %%%% Computation of the final sums for all forms of Gamma %%%% for i=1:2:size(FinalSummationElements,1), ProductRight = prod(FinalSummationElements{i,1}); ProductLeft = prod(FinalSummationElements{i,2}); Product = prod([ProductRight ProductLeft]); Phi = (-1)^mod(length(find([FinalSummationElements{i,1} FinalSummationElements{i,2}] > 1)),2); TauPlus = 0^(mod(E*(E + ProductRight),3)); TauMinus = 0^(mod(E*(E - ProductRight),3)); %%%%% Computation of the Natural Form %%%%%% % Gamma 3 % FinalSummationElements{i,3} = -TauPlus*Phi*(0^(mod(E - ProductRight,ProductLeft)))*(0^(max(ismember([FinalSummationElements{i,1} FinalSummationElements{i,2}],PrimesOfE))))*(0^(length(FinalSummationElements{i,1}) - 1)); % Gamma 4 % FinalSummationElements{i,4} = -TauPlus*Phi*(1/(6*ProductLeft)); % Gamma 6 % FinalSummationElements{i,6} = -TauPlus*Phi*sum((0:1:ProductLeft-1).*(0.^(mod(E - ProductRight - 6*(0:1:ProductLeft-1)*ProductRight, ProductLeft))))/(ProductLeft); % Gamma 8 % FinalSummationElements{i,8} = -TauPlus*Phi*mod(E - 2 - 2*ProductRight - 12*ProductRight*(ProductLeft*0^(mod(E - ProductRight,ProductLeft)) + 12*ProductRight*sum((0:1:ProductLeft-1).*(0.^(mod(E - ProductRight - 6*(0:1:ProductLeft-1)*ProductRight, ProductLeft))))),12*Product)/(12*Product); % Gamma 5 % FinalSummationElements{i+1,5} = -TauMinus*Phi*(5/(6*ProductLeft)); % Gamma 7 % FinalSummationElements{i+1,7} = -TauMinus*Phi*sum((0:1:ProductLeft-1).*(0.^(mod(E - 5*ProductRight - 6*(0:1:ProductLeft-1)*ProductRight,ProductLeft))))/(ProductLeft); % Gamma 9 % FinalSummationElements{i+1,9} = -TauMinus*Phi*mod((E - 2 - 10*ProductRight - 12*ProductRight*(sum((0:1:ProductLeft-1).*(0.^(mod(E - 5*ProductRight - 6*(0:1:ProductLeft-1)*ProductRight,ProductLeft)))))),12*Product)/(12*Product); %%%%% Computation of the Lambda Form %%%%%% EuclideanScale = zeros(1, ProductLeft); for k=0:ProductLeft-1, EuclideanScale(k + 1) = E - ProductRight - (k)*6*ProductRight; end Gamma3Correction = (-1)*((0^(mod(E - ProductRight,ProductLeft)))*(0^(max(ismember([FinalSummationElements{i,1} FinalSummationElements{i,2}],PrimesOfE))))*(0^(length(FinalSummationElements{i,1}) - 1))); LambdaRPlus = ProductRight + (sum((0:1:length(EuclideanScale) - 1).*(0.^mod(EuclideanScale,ProductLeft))))*6*ProductRight - Gamma3Correction*(6*ProductRight*ProductLeft); FinalSummationElements{i,10} = -TauPlus*Phi*(LambdaRPlus/(6*Product)); FinalSummationElements{i,12} = -TauPlus*Phi*mod(E - 2 + 12*Product - 2*LambdaRPlus,12*Product)/(12*Product); for k=0:ProductLeft-1, EuclideanScale(k + 1) = E - 5*ProductRight - (k)*6*ProductRight; end LambdaRMinus = 5*ProductRight + (sum((0:1:length(EuclideanScale) - 1).*(0.^mod(EuclideanScale,ProductLeft))))*6*ProductRight; FinalSummationElements{i+1,11} = -TauMinus*Phi*(LambdaRMinus/(6*Product)); FinalSummationElements{i+1,13} = -TauMinus*Phi*mod(E - 2 - 2*LambdaRMinus,12*Product)/(12*Product); %%%%% Computation of the Equation 17 Form %%%%% FinalSummationElements{i,14} = TauPlus*Phi*floor((E - 2 + 12*Product - 2*LambdaRPlus)/(12*Product)); FinalSummationElements{i+1,15} = TauMinus*Phi*floor((E - 2 + 12*Product - 2*LambdaRMinus)/(12*Product)); end % Empirical counting of the number of Goldbach pairs for comparison % with the computed values of Gamma(E). EmpiricalNumberOfGoldbachPairs = 0; if mod(E,3) == 0, DomainD = sort([5:6:(E - 1)/2 7:6:(E - 1)/2]); else DomainD = (9 - mod(E,6)):6:(E - 1)/2; end for i=DomainD, if isprime(i) && isprime(E - i), EmpiricalNumberOfGoldbachPairs = EmpiricalNumberOfGoldbachPairs + 1; end end FinalComputedResults(end + 1,1) = E; FinalComputedResults(end,2) = ((E - 2)/12)*prod((1 - 2./Primes))*prod((1 - 1./PrimesOfE))*(1 + 0^mod(E,3)); % Gamma 1 FinalComputedResults(end,3) = (1 + 0^mod(E,3))*(0^length(PrimesOfE))*(-1)^mod(length(Primes),2); % Gamma 2 FinalComputedResults(end,4) = sum([FinalSummationElements{:,3}]); % Gamma 3 FinalComputedResults(end,5) = sum([FinalSummationElements{:,4}]); % Gamma 4 FinalComputedResults(end,6) = sum([FinalSummationElements{:,5}]); % Gamma 5 FinalComputedResults(end,7) = sum([FinalSummationElements{:,6}]); % Gamma 6 FinalComputedResults(end,8) = sum([FinalSummationElements{:,7}]); % Gamma 7 FinalComputedResults(end,9) = sum([FinalSummationElements{:,8}]); % Gamma 8 FinalComputedResults(end,10) = sum([FinalSummationElements{:,9}]); % Gamma 9 % Complete sum for Gamma(E) FinalComputedResults(end,11) = sum(FinalComputedResults(end,2:10)); % Comparison with empirically-obtained number of Goldback pairs FinalComputedResults(end,12) = EmpiricalNumberOfGoldbachPairs; % Arriving to the same calculation with the Lambda form of Gamma FinalComputedResults(end,13) = FinalComputedResults(end,2) + FinalComputedResults(end,3) + sum([FinalSummationElements{:,10}]) + sum([FinalSummationElements{:,11}]) + sum([FinalSummationElements{:,12}]) + sum([FinalSummationElements{:,13}]); % Arriving to the same calculation with the Equation 17 form FinalComputedResults(end,14) = sum([FinalSummationElements{:,14}]) + sum([FinalSummationElements{:,15}]); % You can compare columns 11 to 14 in FinalComputedResults to see the % exactness of the calculation of Gamma(E). end % Clear variables that are not useful from memory. clear i j m n Product ProductLeft ProductRight Phi ZeroMod k Gamme3Correction EuclideanScale DomainD LambdaRPlus LambdaRMinus TauPlus TauMinus \end{lstlisting} \newpage \appendix \section{2. Example computed values for a selection of even numbers.} \footnotesize \begin{tabular}{ |c|c|c|c|c|c|c|c|c|c|c|c|c|c| } \hline \thead{E} & \thead{$\Gamma_{1}$} & \thead{$\Gamma_{2}$} & \thead{$\Gamma_{3}$} & \thead{$\Gamma_{4}$} & \thead{$\Gamma_{5}$} & \thead{$\Gamma_{6}$} & \thead{$\Gamma_{7}$} & \thead{$\Gamma_{8}$} & \thead{$\Gamma_{9}$} & \thead{$\Gamma(E)$\\ Sum} & \thead{Empirical \\ Number of \\ Goldbach \\ Pairs} & \thead{$\Gamma(E)$,\\Lambda\\Form} & \thead{Equation\\ 17\\ Sum} \\ \hline 322 & 8.378 & 0 & 2 & -0.037 & 0.898 & -1.177 & 0.886 & 1.695 & -1.643 & 11 & 11 & 11 & 11 \\ 324 & 14.050 & -2 & 4 & 0.000 & 0.000 & 4.765 & -1.902 & -0.790 & 1.877 & 20 & 20 & 20 & 20 \\ 326 & 7.069 & -1 & 1 & -0.006 & 0.031 & 3.417 & -4.553 & -4.104 & 4.148 & 6 & 6 & 6 & 6 \\ 328 & 7.112 & -1 & 2 & 0.006 & -0.031 & -1.118 & 2.487 & 2.766 & -2.222 & 10 & 10 & 10 & 10 \\ 330 & 21.202 & 0 & 2 & 0.121 & 0.606 & -0.787 & 0.728 & -0.935 & 1.065 & 24 & 24 & 24 & 24 \\ 332 & 7.199 & -1 & -1 & -0.006 & 0.031 & -0.447 & 0.679 & -0.457 & 1.001 & 6 & 6 & 6 & 6 \\ 334 & 7.243 & -1 & 1 & 0.006 & -0.031 & 1.115 & 0.623 & 1.619 & -1.575 & 9 & 9 & 9 & 9 \\ 336 & 17.488 & 0 & 1 & 0.143 & 0.714 & 3.061 & -3.511 & 1.052 & -0.948 & 19 & 19 & 19 & 19 \\ 338 & 7.997 & 0 & 0 & 0.227 & -0.367 & -0.754 & 1.849 & 1.298 & -1.250 & 9 & 9 & 9 & 9 \\ 340 & 10.487 & 0 & 0 & 0.335 & -1.045 & 0.171 & 1.991 & 1.950 & -1.888 & 12 & 12 & 12 & 12 \\ 342 & 14.835 & -2 & 2 & 0.000 & 0.000 & 3.872 & -2.795 & 0.710 & 0.377 & 17 & 17 & 17 & 17 \\ 344 & 7.461 & -1 & 2 & -0.006 & 0.031 & -1.174 & 2.145 & -0.163 & 0.707 & 10 & 10 & 10 & 10 \\ 346 & 7.505 & -1 & 0 & 0.006 & -0.031 & -1.420 & 2.896 & 5.324 & -5.281 & 8 & 8 & 8 & 8 \\ 348 & 15.097 & -2 & 1 & 0.000 & 0.000 & -0.759 & 1.575 & 5.210 & -4.123 & 16 & 16 & 16 & 16 \\ 350 & 12.147 & 0 & 0 & 0.131 & -0.081 & 0.064 & -0.330 & -1.653 & 1.723 & 12 & 12 & 12 & 12 \\ 352 & 8.484 & 0 & 1 & 0.170 & -0.090 & -0.034 & -0.578 & 0.287 & -0.238 & 9 & 9 & 9 & 9 \\ 354 & 15.359 & -2 & 2 & 0.000 & 0.000 & 0.610 & 2.944 & 2.710 & -1.623 & 20 & 20 & 20 & 20 \\ 356 & 7.723 & -1 & 1 & -0.006 & 0.031 & 0.099 & -0.390 & -0.869 & 1.413 & 8 & 8 & 8 & 8 \\ 358 & 7.767 & -1 & 2 & 0.006 & -0.031 & 0.045 & 0.169 & 2.030 & -1.987 & 9 & 9 & 9 & 9 \\ 360 & 20.827 & 0 & 2 & 0.133 & 0.667 & 0.395 & -2.139 & -1.942 & 2.058 & 22 & 22 & 22 & 22 \\ 362 & 7.027 & 1 & 1 & 0.000 & -0.002 & -6.690 & 4.625 & 6.065 & -7.026 & 6 & 6 & 6 & 6 \\ 364 & 9.250 & 0 & 3 & -0.023 & 0.775 & -1.927 & 2.874 & 4.003 & -3.952 & 14 & 14 & 14 & 14 \\ 366 & 14.211 & 2 & 4 & 0.000 & 0.000 & 3.522 & -4.811 & -3.628 & 2.706 & 18 & 18 & 18 & 18 \\ 368 & 7.144 & 1 & 0 & 0.000 & -0.002 & 4.116 & -3.798 & -2.935 & 2.474 & 8 & 8 & 8 & 8 \\ 370 & 9.578 & 0 & 2 & 0.167 & -0.166 & 1.855 & -0.485 & -1.043 & 1.095 & 13 & 13 & 13 & 13 \\ 372 & 14.445 & 2 & 3 & 0.000 & 0.000 & 0.905 & -1.428 & 1.872 & -2.794 & 18 & 18 & 18 & 18 \\ 374 & 8.606 & 0 & 0 & -0.191 & 1.666 & -1.013 & 0.885 & -1.913 & 1.960 & 10 & 10 & 10 & 10 \\ 376 & 7.300 & 1 & 1 & 0.000 & 0.002 & 2.303 & -1.144 & -1.526 & 1.065 & 10 & 10 & 10 & 10 \\ 378 & 17.615 & 0 & 3 & 0.143 & 0.714 & 0.003 & 0.431 & 4.047 & -3.953 & 22 & 22 & 22 & 22 \\ 380 & 10.417 & 0 & 1 & 0.124 & 0.013 & 1.329 & 0.063 & 0.156 & -0.101 & 13 & 13 & 13 & 13 \\ \hline \end{tabular} \end{document}